
Research 
Discussion 
Paper

The Life of Australian 
Banknotes

Alexandra Rush

RDP 2015-10



The contents of this publication shall not be reproduced, sold or distributed without the prior 
consent of the Reserve Bank of Australia and, where applicable, the prior consent of the external 
source concerned. Requests for consent should be sent to the Head of Information Department 
at the email address shown above.

ISSN 1448-5109 (Online)

The Discussion Paper series is intended to make the results of the current economic research 
within the Reserve Bank available to other economists. Its aim is to present preliminary results of 
research so as to encourage discussion and comment. Views expressed in this paper are those 
of the authors and not necessarily those of the Reserve Bank. Use of any results from this paper 
should clearly attribute the work to the authors and not to the Reserve Bank of Australia.

Enquiries:

Phone: +61 2 9551 9830 
Facsimile: +61 2 9551 8033 
Email: rbainfo@rba.gov.au 
Website: http://www.rba.gov.au



The Life of Australian Banknotes 

Alexandra Rush 

Research Discussion Paper 
2015-10 

August 2015 

Note Issue Department  
Reserve Bank of Australia 

I thank Michele Bullock, Christopher Kent, Michael Andersen, John Simon, 
Thomas Rohling, Peter Tulip, James Hansen and Matthew Read for valuable 
comments and contributions. The views expressed in this paper are those of the 
author and do not necessarily reflect the views of the Reserve Bank of Australia. 
The author is solely responsible for any errors.  

Author: rushal@rba.gov.au 

Media Office: rbainfo@rba.gov.au 





i 

Abstract 

Understanding the life of banknotes is important to a currency issuer’s forward 
planning. Without accurate predictions of banknote life, there is a risk of incurring 
the economic costs of overproducing and storing excess banknotes or conversely, 
in an extreme case, of not being able to meet the public’s demand. The life of a 
banknote, however, is not directly observed and must be estimated – a process 
complicated by the manner in which banknotes are issued and circulated. Often 
currency issuers use simple turnover formulas to estimate the mean or median life 
of banknotes; however, such measures tend to be particularly volatile over time as 
they cannot take into account shocks to currency demand, or changes to currency 
issuer policies that affect distribution arrangements or the quality of circulating 
banknotes. 

This paper proposes an alternative way of studying banknote life by estimating 
survival models, which are commonly used in studying life expectancies in 
medicine or the duration of events in economics. These models can produce 
estimates of central tendency that are much less volatile over time and provide 
information on the probability that banknotes survive over time. The models’ 
predictions of banknote survival are intuitive and the results are consistent with 
samples of circulating and unfit banknotes. 

JEL Classification Numbers: C41, E42, E58 
Keywords: banknotes, banknote life, currency, turnover, survival analysis, 

nonlinear regression 
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The Life of Australian Banknotes 

Alexandra Rush 

1. Introduction 

Knowledge of the life of a banknote is important to managing an issuer’s banknote 
production, processing, distribution and storage requirements. To make these 
policy decisions, currency issuers need an understanding of how long banknotes 
can remain in circulation before they are no longer fit for purpose and need to be 
replaced with new banknotes. It is also useful to know whether banknotes tend to 
return for destruction gradually over time, or whether a large proportion of 
banknotes become unfit around a particular age. Despite the importance of 
studying the life of banknotes, there is little published research in this area. This 
paper aims to fill that gap. 

Ideally, the life of every banknote could be directly observed by recording its serial 
number when first issued and when returned for final destruction. While this 
capability is becoming increasingly available to currency issuers, it cannot 
retrospectively be applied to banknotes already in circulation. Instead, banknote 
life is typically estimated using aggregate data and samples of circulating or unfit 
banknotes. Using these data to produce reliable estimates of the life of banknotes 
presents challenges, particularly because not all banknotes are necessarily treated 
in the same way by the public – some may spend most of their lives being used for 
transactional purposes, while others may spend considerable time being used as a 
store of value. 

I examine three methods that estimate the life of a banknote based on aggregate 
data. The first two are the traditional steady-state and the Feige steady-state 
methods that are commonly used by currency issuers due to their ease of 
calculation and undemanding data requirements. These two methods are typically 
used to calculate the average life of banknotes, but their estimates can be improved 
upon by instead constructing a median, which tends to be less affected by the fact 
that some banknotes last a very long time when they are used as a store of value. 

While simple to construct, a key limitation to these measures is that they are very 
sensitive to demand shocks, such as the global financial crisis (GFC), and cannot 
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control for changes to currency issuer policies that affect the quality and 
distribution of banknotes. Another limitation is that these methods can only be 
used to study measures of central tendency, including the mean or median 
banknote life. It is also useful, however, to gain an understanding of whether 
banknotes will be returned for destruction gradually over time or if a large 
proportion of banknotes become unfit for purpose around a certain age. 

A better alternative is to develop survival models that can provide both measures 
of central tendency and estimates of banknotes’ probability of survival over time. 
A key contribution of this paper is that these survival models do not require data on 
individual banknotes, but can be formulated using aggregate data commonly 
gathered by currency issuers. More importantly, the survival models can control 
for changes in banknote demand and changes in currency issuer policies, making 
the results less volatile over time, and thus providing a more useful basis for policy 
decisions that should look through short-run fluctuations. Another interesting 
innovation is that the survival models can be used to estimate the number of 
banknotes being held as a store of value. 

To validate the predictions of the models, the estimates can be compared with 
samples of unfit banknotes ready for destruction and also samples from the 
population of banknotes in circulation. Overall, the survival models give a good fit 
to the sample data. 

2. Background 

2.1 The Life of a Banknote 

A banknote’s life begins with its production (Figure 1). Once produced, banknotes 
are held in storage until they are issued to the public. The elapsed time between 
production and issuance can vary considerably depending on the volume of 
banknotes produced in each banknote vintage (production year) and on fluctuations 
in the demand for banknotes. Once issued, banknotes may spend periods of time 
actively circulating or being held as a store of value. 
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Figure 1: Life Cycle of a Banknote 

 
Demand for Australian banknotes broadly changes in line with the nominal growth 
of the economy, but also exhibits seasonal peaks in demand during December and 
Easter each year. Following these seasonal peaks, banknotes in excess of the 
general public’s requirements (‘surplus fit’ banknotes) are returned to the Reserve 
Bank of Australia (RBA) to be reissued at a later date. 

Over time, banknotes deteriorate in quality and become unfit for use in circulation. 
This can occur due to randomly occurring mechanical defects (including staple 
holes, dog-ears and tears) or gradually through the process of inkwear (where the 
ink wears off the banknote as a result of being handled). Banknotes returned to the 
RBA via the commercial cash system are assessed and validated. Fit banknotes are 
eventually reissued into circulation and unfit banknotes are destroyed.1 While the 
destruction of banknotes fluctuates widely from month to month, one clear trend is 
the large fall in the rate of destruction, from an average of 5.7 per cent of 
banknotes in circulation per month prior to 1992, to 1.0 per cent per month after 
the introduction of the polymer New Note Series (NNS) banknotes (Figure 2). 

                                           
1 For more information on the RBA’s damaged banknote policy and sorting standards, see 

<http://banknotes.rba.gov.au/damaged-banknotes/damaged-banknotes-policy/>. 
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Figure 2: Banknote Destructions 
Monthly volume, per cent of stock on issue 

 
Source: RBA 

2.2 Parallels in Other Literature Areas 

Examining the life of a banknote has parallels in many subject areas, including the 
study of the life expectancy of organisms, epidemiology, the reliability of 
equipment or products, and the duration of events. Each literature area draws on 
survival analysis as a means of exploring the proportion of a population that will 
survive to a particular age, the rate at which failure occurs, and the effect that 
different variables or treatments will have on the failure rate.2 

The difficulty in applying similar survival models to the study of the life of an 
Australian banknote is the absence of data that records a banknote’s date of first 
issuance into circulation and date of destruction. Instead, the life of a banknote is 
examined through the aggregate variables commonly available to currency issuers. 
In Australia, stock variables include the number of banknotes on issue, banknotes 

                                           
2 This paper will refer to survival analysis; however, there are many synonyms across different 

fields of study. For instance, in the study of the expected length of periods of unemployment 
it is often referred to as duration analysis (see, for example, Lancaster (1979)). 
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that have not been previously issued and surplus fit banknotes, and flow variables 
include the number of banknotes issued and destroyed. 

2.3 Characterising the Deterioration of Banknotes 

The survival analysis literature uses specialist terms for precisely describing the 
duration of events, such as banknote life. These terms avoid the ambiguities that 
arise with everyday expressions such as ‘life’ or ‘destruction rate’. The survival 
function measures the probability that the terminal date (in this case, when the 
banknote becomes unfit and is destroyed), denoted by the random variable T, is 
greater than a particular time, t. For example, the probability that a $50 banknote 
will last at least 15 years is estimated to be around 40 per cent (see Figure 6). 
Formally, the survival function is given by: 

 ( ) ( ).S t P T t= >  (1) 

The complement of the survival function is the lifetime distribution function, which 
measures the probability that a banknote will be destroyed before or at a particular 
point in time. 

 ( ) ( ) ( )1 .L t S t P T t= − = ≤  (2) 

The derivative of the lifetime distribution function gives the event density function, 
which in this paper will be called the destruction function. Roughly speaking, the 
destruction function can be thought of as the rate at which banknotes are destroyed 
at a particular point in time. 

 ( ) ( ) .
dL t

l t
dt

=  (3) 

The hazard function is defined as the event density at time t, given survival up to 
that point in time. This can be roughly interpreted as the rate at which banknotes 
will become unfit at a particular time, given survival up to that time. For example, 
0.2 per cent of $50 banknotes that survive 20 years are then destroyed in that year. 

 ( ) ( ) ( )/ .h t l t S t=  (4) 



6 

 

Measures of the central tendency of a banknote’s useful life, such as their mean 
and median life when issued, are important for decision-making and can be derived 
from the above functions. In particular, these measures can help to inform 
banknote production decisions that are typically made years in advance. It should 
be clear, however, that these measures of expected life at issuance are different to 
the mean or median age of banknotes that are currently in circulation. 

2.4 The Expected Shape of Hazard Functions 

A banknote’s hazard function will be influenced by the two broad ways in which it 
can become unfit: 

1. Mechanical defects are largely randomly occurring, or in other words, the 
probability that a banknote becomes unfit due to such a defect is invariant to the 
time that the banknote has been on issue. This corresponds with a constant 
hazard function. 

2. Inkwear is a time-variant defect, since the probability that a banknote suffers 
sufficient levels of inkwear to be deemed unfit increases with the time spent in 
circulation. As such, inkwear gives rise to an increasing hazard function. 

Given that these two categories of defects can occur, a banknote’s hazard function 
is expected to increase with respect to time since first issuance. 

The preceding discussion refers to the hazard function of a given banknote; 
however, the average hazard rate of a group of banknotes may behave differently. 
One important factor is heterogeneity in the use of banknotes. Even though 
Australian banknotes are homogeneous, in that they are all made with the same 
materials and production processes over time, banknotes can be used for different 
purposes that affect their survival characteristics. Banknotes used repeatedly for 
transaction purposes are likely to have relatively high hazard rates, consistent with 
the fact that they are likely to experience greater inkwear or be subject to a random 
hazard such as stapling. On the other hand, some banknotes are used as a store of 
value or kept for numismatic purposes, and are therefore held in a protected 
location where they are much less likely to suffer inkwear or a mechanical defect. 
Such banknotes are likely to have very low hazard rates and are unlikely to become 



7 

 

unfit within the life of the banknote series. It is well-established in the survival 
analysis literature that if a population is composed of groups with differing hazard 
rates, even if the groups have constant or rising hazards, the aggregate hazard 
function could appear to be downward sloping, or rise then fall.3 More specific to 
the problem at hand, it has long been recognised in the medical literature (see 
Boag (1949) and Berkson and Gage (1952)) that having a proportion of long-term 
survivors in the population (i.e. individuals that don’t suffer the event of interest 
within the period of study) induces a longer tail in the survival distribution and a 
downward bias in estimates of the aggregate hazard rate. 

Another complicating factor is that the hazard rates observed by the currency 
issuer could be lower due to the process of detecting unfit banknotes in circulation. 
Unfit banknotes are predominantly detected when banknotes that are surplus to 
demand are returned to the commercial cash system and sorted, which means that 
detection rates will be affected by the rate at which banknotes return for 
processing. Banknotes may also continue to circulate while unfit since whether a 
banknote is considered no longer fit for purpose is subjective and can vary 
considerably from person to person. 

3. Traditional Steady-state or Turnover Method 

The most common method that currency issuers use to estimate banknote life is a 
simple formula: the stock of banknotes on issue (averaged over a 12-month period) 
relative to the total number of banknotes destroyed (in the same 12-month period). 
Referring to Figure 1, the formula corresponds to dividing c by d. It is commonly 
termed the ‘steady-state’ method since it was thought that after a banknote series 
had been in circulation for a number of years, the growth in banknote destructions 
and circulation would reach stable levels, allowing for a steady-state estimate of 
banknote life. The formula is analogous to a turnover rate and measures the 
average number of years required to replace the current stock of banknotes in 
circulation if the current rate of destruction continues, thus estimating the useful 
life of the current stock of banknotes on issue. 
                                           
3 As a simple example, consider a population composed of two groups – one with a high 

constant hazard and one with a low constant hazard. If the two groups are not observed, on the 
aggregate level it will appear that the population’s hazard rate is declining since the high 
hazard group will fail more quickly, and over time the surviving population will have a higher 
and higher ratio of low hazard individuals. 
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 12 .
12

Mean Mean stock of banknotesonissueover mths c
banknotelife Total noof banknotes destroyed over mths d

= =  (5) 

Table 1 shows the estimates of the average life for Australia’s $5 to 
$50 denominations. As higher-value denominations are more likely to be used as a 
store of value, whereas lower-value banknotes are used more often in transactions, 
high-value denominations (such as the $50 or $100) turn over in the hands of the 
public far less frequently and hence, are expected to have longer useful lives than 
lower-denomination banknotes.4 Second, the table shows that the average life of 
polymer banknotes has been consistently higher than that of paper banknotes. In 
the case of the low-value denominations, the average life of polymer banknotes is 
estimated at more than five years compared to less than one year for paper 
banknotes. In the case of the higher-value $50 denomination, the comparison is 
even more striking. 

Table 1: Mean Steady-state Banknote Life 
Years 

Denomination Paper NNS polymer 
 1985–91 Since issuance 2000–14 
$5 0.7 5.1 6.3 
$10 0.8 5.0 6.0 
$20 1.1 5.9 6.9 
$50 2.2 14.5 17.4 
Sources: Author’s calculations; RBA 

 
The inverse of Equation (5) equals the rate that banknotes will become unfit and 
withdrawn in a given year, or in other words, their hazard rate. Given this method 
implicitly assumes that banknotes have a constant hazard rate, the median 

                                           
4 Since $100 banknotes are generally held by the public as a store of value, they do not tend to 

actively circulate and with such little handling do not deteriorate significantly over time. 
Indeed, less than 10 per cent of $100 NNS banknotes ever issued have returned to the RBA as 
unfit banknotes. This suggests that the average life span of $100 NNS banknotes will be far 
longer than the NNS banknote series itself, given the decision to introduce a new banknote 
series in the near future. The lack of data also means that more specific estimates of the life of 
$100 banknotes are unreliable and have been excluded from this paper.  
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banknote life can be calculated based on the implied probabilities of survival.5 The 
median is a useful measure since, compared to the mean, it will not be as affected 
by the long tail of the survival distribution. As expected, the median life of 
banknotes is consistently lower than the average for all denominations and 
substrates (Table 2; Figure 3). 

Table 2: Median Steady-state Banknote Life 
Years 

Denomination Paper NNS polymer 
 1985–91 Since issuance 2000–14 
$5 0.5 3.5 4.4 
$10 0.5 3.5 4.1 
$20 0.7 4.1 4.8 
$50 1.5 10.0 12.0 
Sources: Author’s calculations; RBA 

 
The life estimates resulting from the ‘steady-state’ formula display considerable 
volatility over time (Figure 3). The volatility in the estimated average life becomes 
more prominent as the life span of each banknote denomination becomes 
progressively greater than the 12-month periods included in the formula.6 As a 
consequence, the estimates vary considerably over time, particularly for the larger 
denominations. This proposition is also supported by the contrast between the 
standard deviations around the mean estimates for paper and polymer banknotes 
(Table 3). In comparing the standard deviation of the estimated life spans of 
polymer banknotes since issuance to the standard deviation since 2000, it is also 
observed that the volatility of the estimates declines somewhat over time as the 

                                           
5 Those familiar with survival analysis will be aware that the hazard function is constant when 

the survival time is exponentially distributed due to its memoryless property. 
6 To illustrate this point, consider studying a population of mice for a year. If the mice typically 

live for less than a year in the wild, comparing the number of deaths observed relative to the 
size of the population over the year may give a reasonable estimate of their average life. Now 
instead imagine studying a population of tortoises over a year. Since tortoises can live for 
more than 100 years, it may not always be accurate to estimate the average life span based on 
the deaths observed in one year relative to the population size. For example, if many old 
tortoises happened to die in a particular year, life span estimates that year are likely to be 
underestimated. The remaining population thereafter is much younger and therefore is likely 
to experience fewer deaths for a time, and so subsequent life estimates are likely to be 
overestimated for some time. 
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population increasingly includes banknotes across the full range of the survival 
distribution. 

Figure 3: Steady-state Banknote Life 

 
Sources: Author’s calculations; RBA 
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Table 3: Standard Deviation of the Mean Banknote Life 
Denomination Paper NNS polymer 
 1985–91 Since issuance 2000–14 
$5 0.1 2.8 2.3 
$10 0.1 2.0 1.5 
$20 0.2 3.2 3.0 
$50 0.3 7.1 4.9 
Sources: Author’s calculations; RBA 

 

4. ‘Feige’ Steady-state Method 

Some currency issuers use variants of the steady-state formula to overcome some 
of the biases inherent in the traditional steady-state method. One limitation of the 
traditional steady-state method is that it is adversely affected by the growth in the 
number of circulating banknotes. This stems from the fact that destructions (the 
denominator) tend to reflect banknotes that were issued some time ago, whereas 
the stock of banknotes on issue (the numerator) reflects the cumulative sum of 
many years of issued banknotes, including those that have only recently been 
issued. In other words, the average age of banknotes on issue falls if the population 
is growing due to the addition of new banknotes. Clearly this distortion in the 
banknote life estimates has the greatest effect on denominations that survive the 
longest in circulation and those that experience the fastest growth rates in demand. 

Feige (1989) derives an alternative formula for average banknote life by comparing 
the number of times a banknote can typically be used in transactions in its lifetime 
to the number of times it is handled per year. 

 ( ) .
( )

Feige Total noof transactions for themeanbanknote per lifetime
banknotelife Total noof transactions for themeanbanknote per year

=  (6) 

With some algebra, and assuming that the total number of transactions in a typical 
banknote’s lifetime does not change over time, he provides a simple formula for 
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banknote life.7 With reference to Figure 1, this formula is calculated as c divided 
by the average of d and a. 

12
( ) / 2

.
( ) / 2

Feige Mean stock of banknotesonissueover mths
banknotelife Annual noof destructions Annual newbanknotesissued

c
a d

=
+

=
+

 (7) 

Since this method assumes that the hazard rate is constant over time, the median 
life of banknotes can still easily be calculated. By including data on new banknote 
issuance, the formula can reduce the bias in Equation (5) by taking into account the 
growth in banknotes on issue.8 As expected, the resulting mean and median 
banknote life estimates are somewhat lower than the traditional steady-state results 
(Tables 4 and 5; Figure 4). 

Table 4: Mean Banknote Life 
Denomination Paper 

1985–91 
 NNS polymer 

2000–14 
Steady state Feige  Steady state Feige 

$5 0.7 0.7  6.3 5.3 
$10 0.8 0.7  6.0 5.4 
$20 1.1 1.1  6.9 6.5 
$50 2.2 2.0  17.4 15.5 
Sources: Author’s calculations; RBA 

 

                                           
7 See Appendix A for the derivation of the formula. 
8 Continuing the previous analogies to animals, in effect this formula attempts to control for 

changing demographics in a population by including both ‘births’ and ‘deaths’. 
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Table 5: Median Banknote Life 
Denomination Paper 

1985–91 
 NNS polymer 

2000–14 
Steady state Feige  Steady state Feige 

$5 0.5 0.5  4.4 3.7 
$10 0.5 0.5  4.1 3.7 
$20 0.7 0.7  4.8 4.5 
$50 1.5 1.4  12.0 10.7 
Sources: Author’s calculations; RBA 

 
Figure 4: Median Estimates of Banknote Life 

 
Sources: Author’s calculations; RBA 

Although the results of the Feige equation were found to be less volatile for the 
paper series and the low-value $5 and $10 polymer banknotes, there were still 
some sharp fluctuations in the higher-denomination polymer banknote data 
(Table 6; Figure 4). One of the key causes is that the Feige equation only accounts 
for new banknotes when they are initially introduced into circulation. As such, the 
Feige method is less suitable for situations where banknotes are temporarily 
withdrawn from circulation. For example, in the period leading up to Y2K, large 
volumes of new banknotes were issued to meet precautionary demand and were 
withdrawn once they were no longer required, to be reissued at a later time. As a 
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result, there was a sharp decline in the estimated banknote life in 1999 and a sharp 
increase a year later. 

Table 6: Standard Deviation of the Mean Banknote Life 
Denomination Paper 

1985–91 
 NNS polymer 

2000–14 
Steady state Feige  Steady state Feige 

$5 0.12 0.08  2.3 1.8 
$10 0.11 0.08  1.5 1.4 
$20 0.21 0.18  3.0 3.6 
$50 0.32 0.26  4.9 10.0 
Sources: Author’s calculations; RBA 

 

5. Limitations of the Steady-state Methods 

The traditional and Feige steady-state methods are subject to several limitations. 
Both methods assume that the probability of a banknote becoming unfit is the same 
for all banknotes on issue regardless of their age, or in other words, they assume a 
constant hazard function. However, since the discussion in Section 2.4 indicated 
that the aggregate hazard rate is likely to vary with the time since issuance, this 
assumption is not likely to provide the best fit to the data. 

Also, neither method is able to readily accommodate exogenous shocks to the 
number of banknotes on issue or changes in supply-side policies on the part of the 
currency issuer. Feige (1989) also identifies that an underlying assumption of his 
equation is that the total number of transactions in the average banknote’s lifetime 
does not change over time. Over the past twenty or so years, however, there have 
been a number of exogenous shocks, as follows. 

5.1 Demand Shocks 

Events which result in temporary fluctuations in the public’s demand for banknotes 
can adversely affect the steady-state measures of banknote quality. Two examples 
include Y2K and the GFC where the public’s demand for banknotes increased 
substantially. Even though shocks of this nature are often temporary, the impact on 
the number of banknotes in circulation can persist and distort banknote life 
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estimates for several years. For example, in late 2008, the demand for 
$50 banknotes increased sharply in response to the GFC. Although GFC concerns 
quickly abated, the number of $50 banknotes in circulation took more than two 
years to unwind. Reflecting this sharp increase in circulating $50 banknotes, 
banknote life (as estimated by Equations (5) and (7)) increased and remained at 
that higher level for several years (Figure 3). 

5.2 Banknote Quality Programs 

Implicit in the steady-state methods is an assumption that the currency issuer’s 
banknote quality programs are unchanged. This is somewhat unrealistic, however, 
as currency issuers are continually looking for opportunities to enhance the quality 
of banknotes in circulation. These improvements may take the form of new 
arrangements with banks and cash-in-transit companies (such as the Note Quality 
Reward Scheme introduced in Australia in 2006) or targeted ‘cleansing’ programs, 
which involve the accelerated replacement (and destruction) of specific 
denominations in circulation.9 Irrespective of the nature of the change, the outcome 
is the same; initially banknote life would appear to be low as destructions would be 
high relative to the stock of banknotes on issue, but banknote life would be higher 
in subsequent periods due to the higher quality of the remaining stock of banknotes 
on issue. Examples of the effect of cleansing programs can be clearly seen in the 
data for the $20 banknotes in 2006 and 2007, for the $10 banknotes in 2009 and 
2010, and for the $5 in 2011 (Figure 3). 

5.3 New Banknote Series 

When a new series of banknotes is introduced into circulation, old series banknotes 
are withdrawn and destroyed. With a sharp increase in banknote issuances and 
destructions, the steady-state methods suggest a sharp decline in banknote life. 
This decline will be quickly offset, however, as the relatively higher-quality 
banknotes from the new series will circulate for a considerable period before being 
withdrawn. This profile is especially dramatic for banknotes that tend to have an 
average life in excess of the 12-month periods examined in the turnover formulas, 
which helps to explain the change in the banknote life profile of the $50 banknotes 
after the introduction of polymer banknotes in the mid 1990s (Figure 3). 
                                           
9 For more information on the Note Quality Reward Scheme, see Cowling and Howlett (2012). 
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5.4 Cash Management 

Underlying the steady-state methods is an assumption that the cash management 
arrangements between the currency issuer and the wholesale cash industry are 
unchanged. To a large extent this assumption is realistic, as changes to these 
arrangements tend to be incremental and have a negligible impact on banknote life 
estimates. In the case of Australia, however, the changes to the cash management 
arrangements in 2001 were sufficiently large that they did affect the steady-state 
estimates. In addition to changing the manner in which unfit banknotes were 
withdrawn from circulation and destroyed, some precautionary banknote holdings 
were transferred from the RBA to the commercial banks. Privatising these 
banknote holdings to the commercial banks resulted in a permanent increase in the 
number of banknotes measured as ‘on issue’, thereby leading to an increase in the 
average banknote life estimated by the steady-state formulas. 

6. Survival Modelling 

In order to address some of the limitations of the steady-state and Feige methods, I 
estimate survival models for banknote life, which can be used to derive the 
survival, hazard and destruction functions. The models provide estimates of many 
features of banknote survival, including the rates at which banknotes are likely to 
become unfit and measures of central tendency for banknote life spans. Accessible 
introductions to survival analysis are available in Jenkins (2008) and 
Wooldridge (2010). 

Since there are no data recording the dates of issuance and destruction for samples 
of Australian banknotes, I utilise the data on aggregate issuance and destructions to 
estimate survival models. Importantly, the models can include explanatory 
variables that control for events such as demand shocks and changes to a currency 
issuer’s policies. 

6.1 Model Specification 

The survival function can be estimated by using the relationship between the actual 
and expected number of fit banknotes. It is important to note that fit banknotes 
include all banknotes on issue as well as surplus fit banknotes held by the currency 
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issuer.10 The actual number of fit banknotes is assumed to be equal to the total 
number of banknotes ever issued minus the total number of banknotes that have 
been destroyed up to that point in time.11 

 ( )
1

t

t n n
n

F I D
=

= −∑  (8) 

where Ft is the total number of fit banknotes at time t, It is the number of new 
banknotes issued at time t, and Dt is the number of destructions at time t. 

The expected number of fit banknotes at a particular point in time is equal to the 
sum of each new issuance since banknote production began, multiplied by each 
issuance’s survival function – that is the fraction of banknotes from each issuance 
date that are still likely to be fit for purpose at time t. The expected number of fit 
banknotes, based on the aggregate data, is given by: 

 ( ) ( )
1

;
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n
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=

= ∑ α  (9) 

where S( ) is the survival function, τt equals the amount of time since the first 
issuance of banknotes issued at t, and α equals a vector of parameters for survival 
function S. 

Treating the difference between Ft and E(Ft) as a nonlinear regression residual, we 
can use nonlinear least squares to estimate the parameter vector α that governs the 
shape of the survival function, as shown in Equation (10). In other words, the 
actual number of fit banknotes from Equation (8) should be approximately equal to 
the expected number of banknotes from Equation (9). Differences between the two 
measures of fit banknotes may arise due to factors that cannot be included in the 
survival model, including changes in the public’s treatment of banknotes, 

                                           
10 Surplus fit banknotes are those that have previously circulated but are surplus to public 

demand. 
11 This assumption is reasonable if the majority of banknotes that become unfit are returned for 

destruction. Otherwise, if a large proportion of banknotes are lost or destroyed while in 
circulation the number of fit banknotes will be overstated. 
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preferences for different payment instruments, or changes in the policies of the 
commercial cash sector. 

 
( )
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 (10) 

where εt is an error term. 

I investigated a range of different specifications for the survival function in 
Equation (10). I found that results based on Weibull survival distributions, which 
have two parameters that determine the scale (λ) and shape (k) of the distribution, 
were the most plausible. This distribution is commonly used in the survival 
analysis literature and is flexible in that the estimated hazard function can be 
monotonically increasing (when λ is greater than one), monotonically decreasing 
(when λ is less than one) or a constant (when λ equals one). Log-logistic 
specifications were also examined since they allow the hazard function to vary 
non-monotonically, but this property did not seem to be empirically important. 

The specification in Equation (10) can also be extended in two ways. First, the 
discussion in Section 2.4 indicated that it may be important to take into account the 
potential for unobserved heterogeneity in the use of banknotes. Rather than 
assuming that all banknotes will eventually become unfit, we can split the 
population of banknotes into two groups: banknotes that become worn and are 
eventually returned for destruction; and banknotes that will not be returned within 
the life of the banknote series, which could include banknotes that are held for 
precautionary or numismatic purposes. The probability that a banknote returns for 
destruction (p) can be incorporated in the models as an extra parameter to be 
estimated. 

Second, explanatory variables can be introduced to take into account factors that 
impact the issuance, durability and destruction of banknotes to help address some 
of the shortcomings of the two steady-state methods. These variables can be 
included such that they interact with the hazard function multiplicatively, in a 
similar way to the proportional hazards models that are common in the survival 
analysis literature. The specific variables included in the survival models vary 
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across denominations (Table 7). Dummy variables are included to control for the 
RBA’s quality programs which targeted the $5, $10 and $20 denominations. The 
change to the distribution arrangements in 2001, which involved the privatisation 
of some banknote holdings, are more relevant to the higher value $20 and 
$50 denominations, as are the shocks to demand. 

The usage of different denominations in automated teller machines (ATMs) over 
time could also be suggested as a sensible variable to include in the models, as it 
could capture shifts in the public’s treatment of different denominations. The 
number or proportion of different denominations used in ATMs, however, is not 
known. Since changes to the denominations used in ATMs were not coordinated 
across institutions, it would also be difficult to construct accurate dummy 
variables. Observing the yearly issuance patterns after the distribution of polymer 
banknotes (from 1992 for the $5 to 1996 for the $100), it is reassuring to note that 
there does not appear to be any sudden structural shifts in the composition of 
banknotes on issue (Figure 5). It is evident that there are some gradual trends in the 
composition of banknotes on issue over time (such as an increasing prominence of 
$50 banknotes and a decline in the share of $20 banknotes). These trends would be 
important if they are associated with a shift in the public’s treatment of banknotes; 
however, given the stability of the survival model’s estimates over time this does 
not seem to be a concern (Figure 7). 
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Table 7: Explanatory Variables 
Variable Description 
NNS transition A dummy variable is included for each denomination to recognise that the 

hazards faced by banknotes may be different soon after their first issuance. 
For example, it was more common for polymer banknotes to be returned for 
destruction with deliberate scratches or other damage when they were first 
released. For the $5, $20 and $50 denomination the dummy variable equals 
one for around the first 2 years of issuance. The dummy variable equals one 
for a longer period of 3.5 years for the $10, since some minor changes were 
made to the inks used over that time. 

Recoloured $5 The colours of the first $5 polymer banknotes released in 1992 were 
considered too pale and a brighter coloured version has been issued since 
1995. Since destructions and issuances may have been affected by the new 
release, a dummy variable is included and equals one for the period May to 
December 1995. 

Federation $5 A commemorative $5 banknote celebrating the Centenary of Federation was 
issued in 2001 and withdrawn the next year. A dummy variable is included, 
which equals one from January 2001 to September 2002. 

Y2K A dummy variable that equals one for the period August 1999 to July 2000 
to control for the possibility that the public increased their precautionary 
demand for $20 and $50 banknotes around the time of Y2K. 

GFC A dummy variable that controls for the potential increase in precautionary 
demand for $20 and $50 banknotes during the GFC and equals one between 
October 2008 and August 2009. 

Distribution 
policy 

The change to cash management practises in 2001 involved the transfer of 
precautionary holdings from the RBA to the commercial banks. Unlike 
banknotes on issue, the definition of fit banknotes would not be affected by 
this change; however, it is also likely that the commercial banks would have 
adjusted their practices and demand for banknotes in response to the policy 
change. A dummy variable that equals one from November 2001 to 
April 2002 captures the impact of the policy change. 

Quality programs Dummy variables are included to capture the targeted cleansing programs 
that were implemented for the $5 banknotes in 2011, $10 banknotes in 2005 
and 2009 to 2010, and for the $20 denomination in 2006 and 2007. 

GDP growth Nominal GDP growth is calculated quarterly on a year-ended basis; year-
ended GDP growth in each month of a quarter is assumed to be equal to that 
of the whole quarter. 
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Figure 5: Banknotes on Issue 
Annual value as a per cent of GDP 

 
Sources: ABS; RBA 

Another factor that would be expected to impact the life span of banknotes is the 
velocity of money in the economy over time, or in other words, the number of 
times a banknote is used in transactions each month over its life. Since there are no 
direct measures of the velocity of banknotes, year-on-year growth in nominal GDP 
is included in the models as an unsophisticated proxy since it is possible that 
increases in velocity are associated with increases in economic activity. This 
variable, however, could also capture other factors such as changes in the price 
level or changes in the public’s preferences for banknotes. 

With these modifications, the final specification of the Weibull survival model is 
given by: 

 ( ) ( )
/ /

1
1

kkt e n
t n t

n
F p e p Iλ ε−

=

 = ⋅ + − + 
 

∑
x'β

 (11) 



22 

 

where p is the probability of a banknote being returned for destruction12 and x'β 
equals a matrix of explanatory variables and their vector of coefficients. 

Notice that in this specification, for any group of banknotes issued, there is a 
constant (1– p) mass of banknotes that in effect last for ever, and a constant mass, 
p, that are assumed to become unfit. Derivations of the associated hazard function, 
destruction function and measures of central tendency are found in Appendix B. 

6.2 Survival Model Results 

Estimates of the survival models are shown in Table 8. The value of p in the 
$50 model implies that at least 30 per cent of $50 banknotes will not become unfit. 
In comparison, the proportion of banknotes that will not become unfit is between 
10 and 15 per cent for the lower-value denominations. The result that p is 
noticeably lower for the $5 compared to the $10 may not seem intuitive but there 
are a number of reasons that this may be the case. It is plausible that since the $5 is 
the lowest value denomination it is less likely to be looked after by the public and 
more likely to be lost or destroyed in circulation. It is also possible that more 
$5 banknotes are held for numismatic purposes since it was the first NNS 
denomination released, and since recoloured $5 and Federation $5 banknote 
designs were issued. To give a sense of scale – in the first year of the NNS series 
more than 80 million $5 banknotes were issued, around 35 million recoloured $5 
were issued in their first year, and 70 million Federation $5 banknotes were issued 
over 2001 – only an extra 5 per cent of these $5 banknotes (or around 
0.4 banknotes per capita) would have had to be held by the public to make up for 
the difference between the models’ estimates of p for the $5 and $10. 

                                           
12 Technically, p is estimated using a logistic function so that its value is restricted to be 

between zero and one. 
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Table 8: Survival Model Coefficients 
From issuance to September 2014 

Variable $5 $10 $20 $50 
p 0.83*** 0.88*** 0.84*** 0.70*** 
λ 26.19*** 37.09*** 55.71*** 108.99*** 
k 0.70†† 0.93 0.71††† 0.97 
NNS transition –1.49*** –0.30*** –0.27*** 0.22 
Recoloured $5 0.04    
Federation $5 –0.34***    
Y2K   –0.02 –0.05 
GFC   –0.05*** 0.14*** 
Distribution policy   –0.25*** –0.24*** 
Quality program 0.01 0.15*** 0.14***  
Quality program 2  0.14*** 1.52***  
GDP growth 0.89*** 0.86*** 0.33 1.45*** 
Adjusted R2 0.996 0.999 0.998 0.999 
Notes: ***, ** and * indicate significance from zero at the 10, 5 and 1 per cent level, respectively; †††, †† and † 

indicate significance from one at the 10, 5 and 1 per cent level, respectively; the model is estimated with 
Newy-West standard errors; at first glance the adjusted R2 seems remarkably high, however, it should be 
recalled that the left side of the equation is the number of fit banknotes, which should be very similar to 
the expected number of fit banknotes on the right-hand side 

 
The aggregate hazard functions for all denominations are monotonically decreasing 
since the shape parameter, k, is less than one. k is not significantly different from 
one for the $10 and $50, which implies that returning banknotes of these 
denominations may experience a constant hazard. On the other hand, the hazard 
functions for the $5 and $20 denominations are monotonically decreasing 
suggesting that, particularly for these denominations, there may be further 
heterogeneity that remains unexplained or other factors not captured by the current 
model. Overall though, the split population does appear to be able to at least partly 
explain the decreasing hazard functions, since models estimated without a split 
population have hazard functions that slope downwards more strongly (i.e. have 
smaller estimated values of k).13 The results also suggest that inkwear is not the 
dominant factor determining the shape of the observed hazard functions since they 
are not upward sloping. 

                                           
13 See Appendix C for alternate specifications of the model without split populations. 
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Examining the coefficients of the explanatory variables, the reduction in survival 
during the GFC suggests that $50 banknotes were not only held in greater numbers 
but were also used and handled more frequently. The economic significance of the 
GFC variable is not particularly large – a $50 banknote first issued during the GFC 
would be 1.2 per cent less likely to survive its first year of circulation than if the 
GFC had not occurred. On the other hand, Y2K did not have a statistically 
significant impact on the life span of $20 or $50 banknotes. As expected, the 
quality programs (which are associated with elevated banknote destruction rates) 
reduce the survival of banknotes during the period and are statistically significant 
for the $10 and $20 denominations. The GDP growth parameter is positive and 
significant across all denominations except the $20 (for which it is not statistically 
different from zero), indicating the intensity of cash usage increases with economic 
activity. Despite its statistical significance, however, the economic implication of 
this variable is small – for example, a newly issued $50 banknote would be 0.1 per 
cent less likely survive its first year in circulation if year-ended GDP growth was 
4 rather than 3 per cent. 

The coefficients of the models can be used to construct the survival and hazard 
functions for both the population of banknotes and for the sub-population of 
banknotes that will be returned as unfit (Figure 6).14 For both the population and 
the returning banknotes, the $50 banknotes have a higher survival rate compared to 
the other denominations and the $20 banknotes’ survival rate exceeds that of the 
lowest two denominations in all time periods. Looking at the sub-population of 
returning banknotes, it appears that the $10 banknotes survive longer than the 
$5 banknotes; however, for the total populations, a higher proportion of 
$5 banknotes survive in the long run due to their lower propensity to be returned 
for destruction. The hazard functions for the total populations of each banknote 
denomination are downward sloping and, as previously discussed, the hazard 
functions for the returning sub-populations of banknotes are close to constant for 
the $10 and $50, but still somewhat downward sloping for the $5 and $20. 

                                           
14 A policymaker may, in some cases, be more interested in only the survival characteristics of 

banknotes that will be returned for destruction for instance, when making decisions on the 
production volumes required for replacement. 
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Figure 6: Banknote Survival and Hazard Functions 

 
Sources: Author’s calculations; RBA 

6.3 Banknote Life Estimates 

The survival models estimate that the median life span of the population of 
banknotes ranges between around 2 years for the $5 and almost 11 years for the 
$50 (Table 9). The median life for returning banknotes predicted by the survival 
model is, as expected, lower than for the total population. The confidence intervals 
predicted by the survival model fall in a tight range around the point estimates. 

Table 9: Median Banknote Life Estimates and Confidence Intervals 
From issuance of NNS, years 

Denomination Steady state Feige Survival models 
   Population Returning only 
$5 3.5 3.0 1.9 ±0.3 1.2 ±0.3 
$10 3.5 3.2 2.5 ±0.2 2.0 ±0.2 
$20 4.1 3.9 4.0 ±0.3 2.7 ±0.3 
$50 10.0 8.9 10.7 ±0.3 5.9 ±0.9 
Sources: Author’s calculations; RBA 
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Looking more closely at the measures of central tendency across the different 
methodologies also provides some interesting insights (Table 9). The median 
banknote life estimates for all banknotes are most similar for the 
$50 denomination, whereas the estimates for the $5 are noticeably lower under the 
survival modelling framework. Across all of the models and measures, though, we 
observe the same pattern of longer life estimates as the denomination value 
increases. The differential between the useful life of the highest- and lowest-value 
denominations, however, is higher under the survival model’s estimates compared 
to the two steady-state methods. 

The survival models can also be estimated recursively to show how the estimated 
median life evolves over time, that is, by estimating the models with the same 
starting date but incrementally varying the end date of the samples (Figure 7). 
Comparing the recursive survival function estimates with the one-year-at-a-time 
steady-state estimates from Sections 3 and 4, we see that the survival models’ 
median life estimates for the banknote population are far more stable than the 
results of the steady-state methods. This should make the survival model estimates 
more useful for long-term decision-making, where the currency issuer needs to 
abstract from the fluctuations in banknote life estimates caused by one-off events. 
Their disadvantage relative to the steady-state methods is that the survival models 
require a longer time series before estimates can be produced. Interestingly, in 
abstracting from economic growth, demand shocks and currency issuer policies, 
the survival models’ estimates for the $20 and $50 cut through the life predicted by 
the two steady-state methods, whereas the survival model’s estimates for the $5 
and $10 are at the lower bound of the steady-state results. If the survival model 
results are closer to the ‘true’ life span of the banknotes, this would suggest that the 
steady-state formulas have been overestimating the longevity of the $5 and 
$10 banknotes but are not consistently biased for the $20 and $50 denominations. 
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Figure 7: Median Banknote Life Estimates 

 
Sources: Author’s calculations; RBA 

7. Back-testing the Models 

A number of currency issuers sample banknotes as a means of examining the 
quality of banknotes in circulation. In the case of Australia, the RBA examines 
samples of unfit banknotes ready for destruction and also samples from the general 
population of banknotes in circulation. Aside from their primary purpose (to study 
banknote quality), the samples can also be used as an empirical test of the results 
from the survival models and provide some interesting details about the age 
distribution of banknotes. 

7.1 Sampling Unfit Banknotes 

The survival models can be used to predict the median age of banknotes that 
become unfit at a point in time, using data and estimates for the production vintage 
of banknotes issued at each point in time.15 In Australia, unfit banknotes are 
returned to the National Note Processing and Distribution Centre (NNPDC), where 

                                           
15 It is important to note that this measure is different to the median life of banknotes discussed 

in Section 6.3. 
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they are validated, assessed and destroyed. A sample of around 800 000 unfit 
banknotes was extracted in 2011 and sorted into production vintages.16 These data 
were then compared to the composition of unfit banknotes predicted by the 
survival models and the traditional steady-state method. 

The median estimates of the age of unfit banknotes are broadly similar across the 
three methods (Table 10). The median age estimates derived from the steady-state 
method are higher than those in the sample of unfit banknotes, particularly for 
$10 banknotes. The results are most similar between the steady-state method and 
the sample for $5 banknotes; however, the 2011 period coincides with a cleansing 
program for the $5, which as discussed previously, causes the steady-state method 
to have lower life predictions than would otherwise be the case. The median 
estimates for the age of unfit banknotes generated by the survival models are, on 
average, closer to the median sample results, and are especially close for the $20. 

Table 10: Age of Unfit Banknotes in 2011 
Median years 

Denomination Traditional steady state(a) Survival models Unfit sample 
$5 5.3 4.3 5.2 
$10 7.3 4.4 4.9 
$20 5.3 4.4 4.6 
$50 6.6 5.4 6.1 
Note: (a) Calculated based on the average hazard rates predicted over 2011 
Sources: Author’s calculations; RBA 

 
The overall shape of the distribution of unfit banknotes across vintages predicted 
by the survival models is similar to the distribution in the sample (Figure 8). 

                                           
16 The first two numbers of a banknote’s serial number identify the year a banknote was 

manufactured. For more information on serial numbers, see the production section of 
the RBA’s Banknotes microsite at <http://banknotes.rba.gov.au/production-and-
distribution/production/>. 
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Figure 8: Unfit Banknotes in Survival Models and Sample 
Per cent of total, 2011 

  
Sources: Author’s calculations; RBA 

7.2 Sampling Banknotes in Circulation 

A second sample methodology used by the Reserve Bank is the commercial cash 
sampling (CCS) program. This program involves taking samples of unsorted 
banknotes from cash-in-transit (CIT) companies across the country. Although the 
purpose of this program is to assess the quality of circulating banknotes, it also 
provides an opportunity to examine the vintages of banknotes in circulation.17 

Examining three sample periods (February in each of 2011, 2012 and 2013) shows 
that the median ages of banknotes in circulation from the CCS samples tend to be 
closer to those predicted by the survival models (Table 11). Again, the traditional 
steady-state method tends to imply higher median ages for banknotes on issue than 
predicted by the survival models and the CCS sample. 

                                           
17 It should be noted that with around two to three thousand banknotes collected for each 

denomination, the samples are small relative to the stock of banknotes on issue and that the 
samples can only be drawn from the pool of banknotes that actively circulate. 
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Table 11: Age of Banknotes in Circulation 
Median years 

Denomination Traditional 
steady state(a) 

 Survival models  CCS sample 

 2011 2012 2013  2011 2012 2013  2011 2012 2013 
$5 5.7 5.9 6.8  5.5 6.0 6.7  4.8 5.2 5.9 
$10 4.8 5.9 7.2  4.6 5.3 6.6  4.4 5.0 6.6 
$20 5.4 5.9 6.4  5.3 5.9 6.3  4.3 5.0 5.7 
$50 6.7 7.2 7.8  5.5 6.1 6.5  5.1 5.6 6.1 
Note: (a) Calculated based on the average hazard rates predicted over each year to February 
Sources: Author’s calculations; RBA 

 
Looking more closely at the 2013 sample, however, it appears that the survival 
models predict a larger number of early vintage banknotes in circulation than 
represented in the CCS sample, particularly for the $5 and $10 banknotes 
(Figure 9). Although the survival models take into account that some banknotes 
circulate actively and others are stored, each vintage is assumed to have the same 
propensity to be used in transactions. It is possible, however, that cleansing 
programs for the lower-value denominations have removed many of the early 
vintage banknotes out of active circulation and banknotes from these early vintages 
may be more likely to be stored if, for instance, they are of greater numismatic 
interest. Another contributing factor could be that retailers retain good quality low-
value banknotes in their cash registers, whereas all high-value denominations are 
returned to the CITs for processing. 
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Figure 9: Fit Banknotes in Survival Models and CCS Sample 
Per cent of total, 2013 

  
Sources: Author’s calculations; RBA 

8. Conclusion 

The traditional and Feige steady-state methods are relatively easy to calculate and 
simple to interpret. The two methods predict that the median life of Australia’s 
banknotes spans a wide range across different denominations – 3.5 years for the 
$5 banknotes and up to 10 years for $50 banknotes – though all Australian 
banknotes are produced with the same technology and have identical security 
features. Using the same method of calculation, the previous ‘paper’ banknotes are 
estimated to have had a shorter average life (between 6 months and 1.5 years for 
the $5 and $50 denominations respectively) compared with the equivalent polymer 
denominations. However, these steady-state methods are unable to adjust to supply 
and demand shocks, and are thus subject to considerable volatility over time that 
makes them difficult to use for policymaking. 

The survival models result in more stable and intuitive estimates of banknote life 
compared to the steady-state equations. Over the period of polymer banknote 
issuance, the survival models’ median estimates of the life of Australian banknotes 
are similar to the results of the two steady-state methods, at around 2 years for the 
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$5 denomination and almost 11 years for the $50 denomination. Although the 
survival models are more complex, they can be used to produce a range of 
interesting metrics other than the simple measures of central tendency, allowing a 
more in-depth exploration of banknote survival. The results suggest that the 
survival of banknotes is not only dependent on the ways in which banknotes 
become unfit, but on aggregate, they are also influenced by fluctuations in demand, 
the currency issuer’s choice of distribution or processing arrangements, and the 
dual use of banknotes (in transactions and as a store of value). Intuitively, the 
models showed that $50 banknotes are more likely to be used as a store of value as 
well as in transactions, whereas lower-value denominations are predominantly 
used in transactions. 

Despite this, some questions over the true shape of the survival and hazard 
functions remain as it is quite likely that there is still some heterogeneity across 
banknote usage that cannot be captured by the current modelling techniques. In the 
future, technology improvements that make it possible to record the date of first 
issuance and destruction for each banknote would make it feasible to investigate 
this heterogeneity further using more conventional survival analysis techniques. 

The sampling data collected through the RBA’s banknote quality programs provide 
a useful way to test and verify the age distribution of unfit and circulating 
banknotes predicted by the survival models. The age distribution of those 
banknotes in circulation and those that have been destroyed, as predicted by the 
steady-state methods and survival models, are generally similar to those in the two 
banknote samples. On average, however, the survival models’ predictions are 
closer to the outcomes of the banknote sampling programs. 
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Appendix A: Deriving the Feige Steady-state Equation 

Deriving the Feige equation begins by specifying the cumulative number of 
transactions, T*(t), performed by all banknotes by time t: 

 ( ) ( ) ( ) ( )( ) ( )
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t t
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= + − 
 
∫ ∫  

where G is the total number of lifetime transactions a banknote can perform before 
becoming unfit (which is assumed to be constant over time), D(s) is the number of 
banknotes returned to the central bank for destruction by time s, I(s) is the number 
of new banknotes issued by the central bank by time s, and γ (s) equals the average 
proportion of lifetime transactions performed by banknotes on issue at time s. 

The number of banknote transactions per year, T(t), is given by: 
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since Feige (1989) assumes that the average banknote in circulation has completed 
half of its lifetime transactions (i.e. γ(s) = 0.5). It follows that the average annual 
number of transactions per banknote, Z(t), is given by: 
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where C(t) equals banknotes on issue at time t. 

So given the average life of a banknote can be calculated as the number of lifetime 
transactions relative to the number of transactions it undergoes annually, 
substituting in the expressions above, we arrive at the final formula: 
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Rather than using the number of banknotes on issue at a point in time, in practice, 
currency issuers often use the average number of banknotes on issue over the year 
to eliminate variations in the life of banknotes that would arise due to seasonal 
fluctuations in demand. 
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Appendix B: Survival Model Functions 

Survival function: 
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Destruction function: 
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Median life for all banknotes (not defined if p > 0.5): 
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Mean life for returning banknotes: 
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Appendix C: Other Survival Model Specifications 

Table C1: Two-parameter Weibull Model Coefficients 
From issuance to September 2014 

Variable $5 $10 $20 $50 
λ 52.46*** 51.31*** 64.52*** 219.60*** 
k 0.49††† 0.67††† 0.70†† 0.74††† 
Adjusted R2 0.988 0.995 0.982 0.999 
Median life (years) 2.06 2.47 3.18 11.12 
Notes: ***, ** and * indicate significance from zero at the 10, 5 and 1 per cent level, respectively; †††, †† and † 

indicate significance from one at the 10, 5 and 1 per cent level, respectively; the model is estimated with 
Newy-West standard errors 

 
Table C2: Two-parameter Weibull Model Coefficients with Explanatory 

Variables 
From issuance to September 2014 

Variable $5 $10 $20 $50 
λ 49.64*** 52.49*** 117.23*** 237.59*** 
k 0.39††† 0.57††† 0.46††† 0.75††† 
NNS transition –1.66*** –0.45*** –0.57*** –0.03 
Recoloured $5 –0.10*    
Federation $5 –0.21***    
Y2K   –0.06 –0.10* 
GFC   0.02 0.09*** 
Distribution policy   –0.20*** –0.21*** 
Quality program –0.02 0.07*** 0.13***  
Quality program 2  0.08*** 1.04***  
GDP growth 0.66*** 0.68*** 0.78** 1.29*** 
Adjusted R2 0.995 0.998 0.997 0.999 
Median life (years) 1.50 2.18 4.10 11.37 
Notes: ***, ** and * indicate significance from zero at the 10, 5 and 1 per cent level, respectively; †††, †† and † 

indicate significance from one at the 10, 5 and 1 per cent level, respectively; the model is estimated with 
Newy-West standard errors 
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