Skip to content
Research Discussion Paper – 1974
Equation (A.37)
dXL
dt
=
F
1
(
)
[
PN
(
1
−
TI
)
.
[
WE
∂
(
1
+
TP
)
∂
t
+
(
1
+
TP
)
∂
WE
∂
t
]
−
WE
(
1
+
TP
)
[
∂
PN
∂
t
(
1
−
TI
)
+
∂
(
1
−
TI
)
∂
t
PN
]
[
P
N
(
1
−
T
I
)
]
2
]
+
F
2
(
)
[
PN
∂
PT
∂
T
−
∂
PN
∂
t
PT
PN
2
]
+
F
3
(
)
[
∂
Q
∂
t
]
−
J
1
(
)
[
PN
[
∂
WE
∂
t
(
1
−
TY
)
+
∂
(
1
−
T
Y
)
∂
T
WE
]
−
∂
PN
∂
t
WE
(
1
−
TY
)
PN
2
]
−
J
2
(
)
[
PN
∂
PT
∂
t
−
∂
PN
∂
t
PT
PN
2
]
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaabsgacaqGybGaaeitaaqaaiaabsgacaqG0baaaiabg2da9iaa bAeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8oacaGLOaGaayzkaaWaamWaaeaadaWcaaqaaiaa bcfacaqGobWaaeWaaeaacaaIXaGaeyOeI0IaaeivaiaabMeaaiaawI cacaGLPaaacaGGUaWaamWaaeaacaqGxbGaaeyramaalaaabaGaeyOa Iy7aaeWaaeaacaaIXaGaey4kaSIaaeivaiaabcfaaiaawIcacaGLPa aaaeaacqGHciITcaqG0baaaiabgUcaRmaabmaabaGaaGymaiabgUca RiaabsfacaqGqbaacaGLOaGaayzkaaWaaSaaaeaacqGHciITcaqGxb GaaeyraaqaaiabgkGi2kaabshaaaaacaGLBbGaayzxaaGaeyOeI0Ia ae4vaiaabweadaqadaqaaiaaigdacqGHRaWkcaqGubGaaeiuaaGaay jkaiaawMcaamaadmaabaWaaSaaaeaacqGHciITcaqGqbGaaeOtaaqa aiabgkGi2kaabshaaaWaaeWaaeaacaaIXaGaeyOeI0IaaeivaiaabM eaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiabgkGi2oaabmaabaGa aGymaiabgkHiTiaabsfacaqGjbaacaGLOaGaayzkaaaabaGaeyOaIy RaaeiDaaaacaqGqbGaaeOtaaGaay5waiaaw2faaaqaamaadmaabaGa amiuaiaad6eadaqadaqaaiaaigdacqGHsislcaWGubGaamysaaGaay jkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaaa kiaawUfacaGLDbaaaeaacqGHRaWkcaqGgbWaaSbaaSqaaiaaikdaae qaaOWaaeWaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdGaayjk aiaawMcaamaadmaabaWaaSaaaeaacaqGqbGaaeOtamaalaaabaGaey OaIyRaaeiuaiaabsfaaeaacqGHciITcaqGubaaaiabgkHiTmaalaaa baGaeyOaIyRaaeiuaiaab6eaaeaacqGHciITcaqG0baaaiaabcfaca qGubaabaGaaeiuaiaab6eadaahaaWcbeqaaiaaikdaaaaaaaGccaGL BbGaayzxaaGaey4kaSIaaeOramaaBaaaleaacaaIZaaabeaakmaabm aabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aiaawIcacaGLPaaa daWadaqaamaalaaabaGaeyOaIyRaaeyuaaqaaiabgkGi2kaabshaaa aacaGLBbGaayzxaaaabaGaeyOeI0IaaeOsamaaBaaaleaacaaIXaaa beaakmaabmaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aiaawI cacaGLPaaadaWadaqaamaalaaabaGaaeiuaiaab6eadaWadaqaamaa laaabaGaeyOaIyRaae4vaiaabweaaeaacqGHciITcaqG0baaamaabm aabaGaaGymaiabgkHiTiaabsfacaqGzbaacaGLOaGaayzkaaGaae4k amaalaaabaGaeyOaIy7aaeWaaeaacaaIXaGaeyOeI0IaamivaiaadM faaiaawIcacaGLPaaaaeaacqGHciITcaWGubaaaiaabEfacaqGfbaa caGLBbGaayzxaaGaeyOeI0YaaSaaaeaacqGHciITcaqGqbGaaeOtaa qaaiabgkGi2kaabshaaaGaae4vaiaabweadaqadaqaaiaaigdacqGH sislcaqGubGaaeywaaGaayjkaiaawMcaaaqaaiaabcfacaqGobWaaW baaSqabeaacaaIYaaaaaaaaOGaay5waiaaw2faaaqaaiabgkHiTiaa bQeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8oacaGLOaGaayzkaaWaamWaaeaadaWcaaqaaiaa bcfacaqGobWaaSaaaeaacqGHciITcaqGqbGaaeivaaqaaiabgkGi2k aabshaaaGaeyOeI0YaaSaaaeaacqGHciITcaqGqbGaaeOtaaqaaiab gkGi2kaabshaaaGaaGPaVlaabcfacaqGubaabaGaaeiuaiaab6eada ahaaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaaaa@18BB@