Skip to content
Research Discussion Paper – 1974
Equation (A.53)
Δ
X
N
=
L
1
(
)
(
W
E
(
1
−
T
Y
)
P
N
)
[
W
E
•
+
t
Y
•
−
P
N
•
]
+
L
2
(
)
(
P
T
P
N
[
P
T
•
−
P
N
•
]
−
G
1
(
)
(
W
E
(
1
+
T
P
)
P
N
(
1
−
T
I
)
)
[
W
E
•
+
t
P
•
−
P
N
•
−
t
I
•
]
−
G
2
(
)
(
P
T
P
N
)
[
P
T
•
−
P
N
•
]
−
G
3
(
⋅
)
(
Q
)
Q
•
Setting
L
1
(
)
(
W
E
(
1
−
T
Y
)
P
N
)
=
f
L
2
(
)
(
P
T
P
N
)
=
g
G
1
(
)
(
W
E
(
1
+
T
P
)
P
N
(
1
−
T
I
)
)
=
−
h
G
2
(
)
(
P
T
P
N
)
=
−
i
G
3
(
)
(
Q
)
=
j
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHuo arcaaMc8Uaamiwaiaad6eacqGH9aqpcaWGmbWaaSbaaSqaaiaaigda aeqaaOWaaeWaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdGaay jkaiaawMcaamaabmaabaWaaSaaaeaacaWGxbGaamyramaabmaabaGa aGymaiabgkHiTiaadsfacaWGzbaacaGLOaGaayzkaaaabaGaamiuai aad6eaaaaacaGLOaGaayzkaaWaamWaaeaadaWfGaqaaiaadEfacaWG fbaaleqabaGaeyOiGClaaOGaey4kaSYaaCbiaeaacaWG0bGaamywaa Wcbeqaaiabgkci3caakiabgkHiTmaaxacabaGaamiuaiaad6eaaSqa beaacqGHIaYTaaaakiaawUfacaGLDbaaaeaacqGHRaWkcaWGmbWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVdGaayjkaiaawMcaamaabeaabaWaaSaaaeaacaWGqbGaam ivaaqaaiaadcfacaWGobaaaaGaayjkaaWaamWaaeaadaWfGaqaaiaa dcfacaWGubaaleqabaGaeyOiGClaaOGaeyOeI0YaaCbiaeaacaWGqb GaamOtaaWcbeqaaiabgkci3caaaOGaay5waiaaw2faaaqaaiabgkHi TiaadEeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8oacaGLOaGaayzkaaWaaeWaaeaadaWcaaqa aiaadEfacaWGfbWaaeWaaeaacaaIXaGaey4kaSIaamivaiaadcfaai aawIcacaGLPaaaaeaacaWGqbGaamOtamaabmaabaGaaGymaiabgkHi TiaadsfacaWGjbaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaadm aabaWaaCbiaeaacaWGxbGaamyraaWcbeqaaiabgkci3caakiabgUca RmaaxacabaGaamiDaiaadcfaaSqabeaacqGHIaYTaaGccqGHsislda WfGaqaaiaadcfacaWGobaaleqabaGaeyOiGClaaOGaeyOeI0YaaCbi aeaacaWG0bGaamysaaWcbeqaaiabgkci3caaaOGaay5waiaaw2faaa qaaiabgkHiTiaadEeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8oacaGLOaGaayzkaaWaaeWaae aadaWcaaqaaiaadcfacaWGubaabaGaamiuaiaad6eaaaaacaGLOaGa ayzkaaWaamWaaeaadaWfGaqaaiaadcfacaWGubaaleqabaGaeyOiGC laaOGaeyOeI0YaaCbiaeaacaWGqbGaamOtaaWcbeqaaiabgkci3caa aOGaay5waiaaw2faaiabgkHiTiaadEeadaWgaaWcbaGaaG4maaqaba GcdaqadaqaaiabgwSixdGaayjkaiaawMcaamaabmaabaGaamyuaaGa ayjkaiaawMcaaiaaykW7daWfGaqaaiaadgfaaSqabeaacqGHIaYTaa aakeaacaqGtbGaaeyzaiaabshacaqG0bGaaeyAaiaab6gacaqGNbGa aGPaVlaadYeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8oacaGLOaGaayzkaaWaaeWaaeaadaWc aaqaaiaadEfacaWGfbWaaeWaaeaacaaIXaGaeyOeI0IaamivaiaadM faaiaawIcacaGLPaaaaeaacaWGqbGaamOtaaaaaiaawIcacaGLPaaa cqGH9aqpcaWGMbaabaGaamitamaaBaaaleaacaaIYaaabeaakmaabm aabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aiaawIcacaGLPaaa daqadaqaamaalaaabaGaamiuaiaadsfaaeaacaWGqbGaamOtaaaaai aawIcacaGLPaaacqGH9aqpcaWGNbaabaGaam4ramaaBaaaleaacaaI XaaabeaakmaabmaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ai aawIcacaGLPaaadaqadaqaamaalaaabaGaam4vaiaadweadaqadaqa aiaaigdacqGHRaWkcaWGubGaamiuaaGaayjkaiaawMcaaaqaaiaadc facaWGobWaaeWaaeaacaaIXaGaeyOeI0IaamivaiaadMeaaiaawIca caGLPaaaaaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaamiAaaqaai aadEeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8oacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaai aadcfacaWGubaabaGaamiuaiaad6eaaaaacaGLOaGaayzkaaGaeyyp a0JaeyOeI0IaamyAaaqaaiaadEeadaWgaaWcbaGaaG4maaqabaGcda qadaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8oacaGLOaGaayzk aaWaaeWaaeaacaWGrbaacaGLOaGaayzkaaGaeyypa0JaamOAaaaaaa@3D59@