Skip to content
RDP 7902: Financial Modelling in Australia
Equation (16)
(
A
it
−
A
it
−
1
)
=
[
(
a
i
a
i
+
b
i
)
+
(
1
a
i
+
b
i
)
(
1
Σ
j
=
1
n
(
a
j
+
b
j
)
+
Σ
j
=
1
m
(
c
j
+
d
j
)
)
]
x
[
b
i
a
i
+
b
i
]
(
A
*
it
−
A
it
−
1
)
+
1
a
i
+
b
i
{
1
Σ
j
=
1
n
(
a
j
+
b
j
)
+
Σ
j
=
1
m
(
c
j
+
d
j
)
}
x
{
Σ
j
≠
i
j
=
1
n
b
j
a
j
+
b
j
(
A
jt
*
−
A
jt
−
1
)
+
Σ
j
=
1
m
d
j
d
j
+
c
j
(
C
*
jt
−
C
jt
−
1
)
}
,
i
=
1
,
..
,
n
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada qaaiaabgeadaWgaaWcbaGaaeyAaiaabshacqGHsislcaqGbbWaaSba aWqaaiaabMgacaqG0bGaeyOeI0IaaGymaaqabaaaleqaaaGccaGLOa GaayzkaaGaeyypa0ZaamWaaeaadaqadaqaamaalaaabaGaaeyyamaa BaaaleaacaqGPbaabeaaaOqaaiaabggadaWgaaWcbaGaaeyAaaqaba GccqGHRaWkcaqGIbWaaSbaaSqaaiaabMgaaeqaaaaaaOGaayjkaiaa wMcaaiabgUcaRmaabmaabaWaaSaaaeaacaaIXaaabaGaaeyyamaaBa aaleaacaqGPbaabeaakiabgUcaRiaabkgadaWgaaWcbaGaaeyAaaqa baaaaaGccaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaaigdaaeaada aeWbqaamaabmaabaGaaeyyamaaBaaaleaacaqGQbaabeaakiabgUca RiaabkgadaWgaaWcbaGaaeOAaaqabaaakiaawIcacaGLPaaacqGHRa WkdaaeWbqaamaabmaabaGaae4yamaaBaaaleaacaqGQbaabeaakiab gUcaRiaabsgadaWgaaWcbaGaaeOAaaqabaaakiaawIcacaGLPaaaaS qaaiaabQgacqGH9aqpcaaIXaaabaGaaeyBaaqdcqGHris5aaWcbaGa aeOAaiabg2da9iaaigdaaeaacaqGUbaaniabggHiLdaaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaaabaGaaeiEamaadmaabaWaaSaaaeaa caqGIbWaaSbaaSqaaiaabMgaaeqaaaGcbaGaaeyyamaaBaaaleaaca qGPbaabeaakiabgUcaRiaabkgadaWgaaWcbaGaaeyAaaqabaaaaaGc caGLBbGaayzxaaWaaeWaaeaacaqGbbGaaiOkamaaBaaaleaacaqGPb GaaeiDaaqabaGccqGHsislcaqGbbWaaSbaaSqaaiaabMgacaqG0bGa eyOeI0IaaGymaaqabaaakiaawIcacaGLPaaaaeaacqGHRaWkdaWcaa qaaiaaigdaaeaacaqGHbWaaSbaaSqaaiaabMgaaeqaaOGaey4kaSIa aeOyamaaBaaaleaacaqGPbaabeaaaaGcdaGadaqaamaalaaabaGaaG ymaaqaamaaqahabaWaaeWaaeaacaqGHbWaaSbaaSqaaiaabQgaaeqa aOGaey4kaSIaaeOyamaaBaaaleaacaqGQbaabeaaaOGaayjkaiaawM caaiabgUcaRmaaqahabaWaaeWaaeaacaqGJbWaaSbaaSqaaiaabQga aeqaaOGaey4kaSIaaeizamaaBaaaleaacaqGQbaabeaaaOGaayjkai aawMcaaaWcbaGaaeOAaiabg2da9iaaigdaaeaacaqGTbaaniabggHi LdaaleaacaqGQbGaeyypa0JaaGymaaqaaiaab6gaa0GaeyyeIuoaaa aakiaawUhacaGL9baaaeaacaqG4bWaaiWaaeaadaaeWbqaamaalaaa baGaaeOyamaaBaaaleaacaqGQbaabeaaaOqaaiaabggadaWgaaWcba GaaeOAaaqabaGccqGHRaWkcaqGIbWaaSbaaSqaaiaabQgaaeqaaaaa kmaabmaabaGaaeyqamaaDaaaleaacaqGQbGaaeiDaaqaaiaacQcaaa GccqGHsislcaqGbbWaaSbaaSqaaiaabQgacaqG0bGaeyOeI0IaaGym aaqabaaakiaawIcacaGLPaaacqGHRaWkdaaeWbqaamaalaaabaGaae izamaaBaaaleaacaqGQbaabeaaaOqaaiaabsgadaWgaaWcbaGaaeOA aaqabaGccqGHRaWkcaqGJbWaaSbaaSqaaiaabQgaaeqaaaaakmaabm aabaGaae4qaiaacQcadaWgaaWcbaGaaeOAaiaabshaaeqaaOGaeyOe I0Iaae4qamaaBaaaleaacaqGQbGaaeiDaiabgkHiTiaaigdaaeqaaa GccaGLOaGaayzkaaaaleaacaqGQbGaeyypa0JaaGymaaqaaiaab2ga a0GaeyyeIuoaaSqaamaaDaaameaacaqGQbGaeyiyIKRaamyAaaqaai aabQgacqGH9aqpcaaIXaaaaaWcbaGaaeOBaaqdcqGHris5aaGccaGL 7bGaayzFaaGaaiilaiaaykW7caqGPbGaeyypa0JaaGymaiaacYcaca GGUaGaaiOlaiaacYcacaqGUbaaaaa@E6B1@