Skip to content
RDP 7903: Monetary Rules: A Preliminary Analysis
Equation
Dlog
P
d
d
=
.46
(
5.2
)
(
log
P
d
^
−
log
P
d
d
)
−
.12
(
−
2.2
)
(
log
P
m
^
−
log
M
)
log
P
d
^
=
d
0
+
1.0
log
(
Py
−
T
1
+
Pc
)
−
.28
(
−
2.5
)
(
r
−
4.0
Dlog
P
)
log
m
^
=
m
0
+
1.0
log
y
−
2.70
(
−
2.9
)
r
−
2.13
(
−
2.6
)
r
w
+
.38
(
1.1
)
r
b
1
+
.06
(
0.8
)
log
EP
w
log
P
d
=
P
d
o
+
.2
log
EP
i
+
(
1
−
.2
)
log
P
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGeb GaaeiBaiaab+gacaqGNbGaaGPaVlaabcfadaWgaaWcbaGaaeizaaqa baGccaqGKbGaeyypa0ZaaCbeaeaacaGGUaGaaGinaiaaiAdaaSqaam aabmaabaGaaGynaiaac6cacaaIYaaacaGLOaGaayzkaaaabeaakmaa bmaabaGaaeiBaiaab+gacaqGNbGaaGPaVlaabcfaceWGKbGbaKaacq GHsislcaqGSbGaae4BaiaabEgacaaMc8UaaeiuamaaBaaaleaacaqG KbaabeaakiaabsgaaiaawIcacaGLPaaacqGHsisldaWfqaqaaiaac6 cacaaIXaGaaGOmaaWcbaWaaeWaaeaacqGHsislcaaIYaGaaiOlaiaa ikdaaiaawIcacaGLPaaaaeqaaOWaaeWaaeaacaqGSbGaae4BaiaabE gacaaMc8Uaaeiuaiqad2gagaqcaiabgkHiTiaabYgacaqGVbGaae4z aiaaykW7caqGnbaacaGLOaGaayzkaaaabaGaaeiBaiaab+gacaqGNb GaaGPaVlaabcfaceWGKbGbaKaacqGH9aqpcaqGKbWaaSbaaSqaaiaa icdaaeqaaOGaey4kaSIaaGymaiaac6cacaaIWaGaaGPaVlaabYgaca qGVbGaae4zamaabmaabaGaaeiuaiaabMhacqGHsislcaqGubWaaSba aSqaaiaabgdaaeqaaOGaey4kaSIaaeiuaiaabogaaiaawIcacaGLPa aacqGHsisldaWfqaqaaiaac6cacaaIYaGaaGioaaWcbaWaaeWaaeaa cqGHsislcaaIYaGaaiOlaiaaiwdaaiaawIcacaGLPaaaaeqaaOWaae WaaeaacaqGYbGaeyOeI0IaaGinaiaac6cacaaIWaGaaGPaVlaabsea caqGSbGaae4BaiaabEgacaaMc8UaaeiuaaGaayjkaiaawMcaaaqaai aabYgacaqGVbGaae4zaiaaykW7ceWGTbGbaKaacqGH9aqpcaqGTbWa aSbaaSqaaiaabcdaaeqaaOGaey4kaSIaaGymaiaac6cacaaIWaGaaG PaVlaabYgacaqGVbGaae4zaiaaykW7caqG5bGaeyOeI0YaaCbeaeaa caaIYaGaaiOlaiaaiEdacaaIWaaaleaadaqadaqaaiabgkHiTiaaik dacaGGUaGaaGyoaaGaayjkaiaawMcaaaqabaGccaaMc8UaaeOCaiab gkHiTmaaxababaGaaGOmaiaac6cacaaIXaGaaG4maaWcbaWaaeWaae aacqGHsislcaaIYaGaaiOlaiaaiAdaaiaawIcacaGLPaaaaeqaaOGa aGPaVlaabkhadaWgaaWcbaGaae4DaaqabaGccqGHRaWkdaWfqaqaai aac6cacaaIZaGaaGioaaWcbaWaaeWaaeaacaaIXaGaaiOlaiaaigda aiaawIcacaGLPaaaaeqaaOGaaeOCamaaBaaaleaacaqGIbGaaGymaa qabaGccqGHRaWkdaWfqaqaaiaac6cacaaIWaGaaGOnaaWcbaWaaeWa aeaacaaIWaGaaiOlaiaaiIdaaiaawIcacaGLPaaaaeqaaOGaaeiBai aab+gacaqGNbGaaGPaVlaabweacaqGqbWaaSbaaSqaaiaabEhaaeqa aaGcbaGaaeiBaiaab+gacaqGNbGaaGPaVlaabcfadaWgaaWcbaGaae izaaqabaGccqGH9aqpcaqGqbWaaSbaaSqaaiaabsgadaWgaaadbaGa ae4BaaqabaaaleqaaOGaey4kaSIaaiOlaiaaikdacaqGSbGaae4Bai aabEgacaaMc8UaaeyraiaabcfadaWgaaWcbaGaaeyAaaqabaGccqGH RaWkdaqadaqaaiaaigdacqGHsislcaGGUaGaaGOmaaGaayjkaiaawM caaiaabYgacaqGVbGaae4zaiaaykW7caqGqbaaaaa@F8EE@