Skip to content
RDP 8601: Classical Models and Unobserved Aggregates
Equation
v
11
=
α
2
W
+
α
2
σ
η
2
+
σ
s
2
+
α
2
σ
d
2
v
21
=
α
W
+
α
σ
η
2
−
σ
s
2
+
α
σ
d
2
v
22
=
W
+
σ
η
2
+
σ
s
2
+
σ
d
2
v
31
=
α
(
1
+
α
+
α
β
+
γ
)
W
+
(
β
−
γ
)
σ
s
2
+
α
(
δ
+
α
δ
+
α
β
+
γ
)
σ
η
2
+
α
(
(
α
β
+
γ
)
)
σ
d
2
v
32
=
(
1
+
α
+
α
β
+
γ
)
W
−
(
β
−
γ
)
σ
s
2
+
(
δ
+
α
δ
+
α
β
+
γ
)
σ
η
2
+
α
(
(
α
β
+
γ
)
)
σ
d
2
v
33
=
(
1
+
α
+
α
β
+
γ
)
2
W
+
(
β
−
γ
)
2
σ
s
2
+
(
δ
+
α
δ
+
α
β
+
γ
)
2
σ
η
2
+
α
(
(
α
β
+
γ
)
)
2
σ
d
2
+
(
1
+
α
)
2
σ
μ
2
v
41
=
α
(
1
+
α
)
σ
η
2
v
42
=
α
(
1
+
α
)
σ
η
2
v
43
=
(
1
+
α
)
(
δ
+
α
δ
+
α
β
+
γ
)
σ
η
2
v
44
=
(
1
+
α
)
2
σ
η
2
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqG2b WaaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da9iabeg7aHnaaCaaa leqabaGaaGOmaaaakiaabEfacqGHRaWkcqaHXoqydaahaaWcbeqaai aaikdaaaGccqaHdpWCdaqhaaWcbaGaeq4TdGgabaGaaGOmaaaakiab gUcaRiabeo8aZnaaDaaaleaacaqGZbaabaGaaGOmaaaakiabgUcaRi abeg7aHnaaCaaaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaqG KbaabaGaaGOmaaaaaOqaaiaabAhadaWgaaWcbaGaaGOmaiaaigdaae qaaOGaeyypa0JaeqySdeMaae4vaiabgUcaRiabeg7aHjabeo8aZnaa DaaaleaacqaH3oaAaeaacaaIYaaaaOGaeyOeI0Iaeq4Wdm3aa0baaS qaaiaabohaaeaacaaIYaaaaOGaey4kaSIaeqySdeMaeq4Wdm3aa0ba aSqaaiaabsgaaeaacaaIYaaaaaGcbaGaaeODamaaBaaaleaacaaIYa GaaGOmaaqabaGccqGH9aqpcaqGxbGaey4kaSIaeq4Wdm3aa0baaSqa aiabeE7aObqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaae 4CaaqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaaeizaaqa aiaaikdaaaaakeaacaqG2bWaaSbaaSqaaiaaiodacaaIXaaabeaaki abg2da9iabeg7aHjaacIcacaaIXaGaey4kaSIaeqySdeMaey4kaSIa eqySdeMaeqOSdiMaey4kaSIaeq4SdCMaaiykaiaacEfacqGHRaWkca GGOaGaeqOSdiMaeyOeI0Iaeq4SdCMaaiykaiabeo8aZnaaDaaaleaa caqGZbaabaGaaGOmaaaakiabgUcaRiabeg7aHjaacIcacqaH0oazcq GHRaWkcqaHXoqycqaH0oazcqGHRaWkcqaHXoqycqaHYoGycqGHRaWk cqaHZoWzcaGGPaGaeq4Wdm3aa0baaSqaaiabeE7aObqaaiaaikdaaa GccqGHRaWkcqaHXoqycaGGOaGaaiikaiabeg7aHjabek7aIjabgUca Riabeo7aNjaacMcacaGGPaGaeq4Wdm3aa0baaSqaaiaabsgaaeaaca aIYaaaaaGcbaGaaeODamaaBaaaleaacaaIZaGaaGOmaaqabaGccqGH 9aqpcaGGOaGaaGymaiabgUcaRiabeg7aHjabgUcaRiabeg7aHjabek 7aIjabgUcaRiabeo7aNjaacMcacaGGxbGaeyOeI0Iaaiikaiabek7a IjabgkHiTiabeo7aNjaacMcacqaHdpWCdaqhaaWcbaGaae4Caaqaai aaikdaaaGccqGHRaWkcaGGOaGaeqiTdqMaey4kaSIaeqySdeMaeqiT dqMaey4kaSIaeqySdeMaeqOSdiMaey4kaSIaeq4SdCMaaiykaiabeo 8aZnaaDaaaleaacqaH3oaAaeaacaaIYaaaaOGaey4kaSIaeqySdeMa aiikaiaacIcacqaHXoqycqaHYoGycqGHRaWkcqaHZoWzcaGGPaGaai ykaiabeo8aZnaaDaaaleaacaqGKbaabaGaaGOmaaaaaOqaaiaabAha daWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyypa0ZaaeWaaeaacaaIXa Gaey4kaSIaeqySdeMaey4kaSIaeqySdeMaeqOSdiMaey4kaSIaeq4S dCgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaai4vaiabgU caRmaabmaabaGaeqOSdiMaeyOeI0Iaeq4SdCgacaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaaiaabohaaeaaca aIYaaaaOGaey4kaSYaaeWaaeaacqaH0oazcqGHRaWkcqaHXoqycqaH 0oazcqGHRaWkcqaHXoqycqaHYoGycqGHRaWkcqaHZoWzaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaeq4T dGgabaGaaGOmaaaakiabgUcaRiabeg7aHnaabmaabaWaaeWaaeaacq aHXoqycqaHYoGycqGHRaWkcqaHZoWzaiaawIcacaGLPaaaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaae izaaqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaaigdacqGHRaWkcqaH XoqyaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqaHdpWCda qhaaWcbaGaeqiVd0gabaGaaGOmaaaaaOqaaiaabAhadaWgaaWcbaGa aGinaiaaigdaaeqaaOGaeyypa0JaeqySdeMaaiikaiaaigdacqGHRa WkcqaHXoqycaGGPaGaeq4Wdm3aa0baaSqaaiabeE7aObqaaiaaikda aaaakeaacaqG2bWaaSbaaSqaaiaaisdacaaIYaaabeaakiabg2da9i abeg7aHjaacIcacaaIXaGaey4kaSIaeqySdeMaaiykaiabeo8aZnaa DaaaleaacqaH3oaAaeaacaaIYaaaaaGcbaGaaeODamaaBaaaleaaca aI0aGaaG4maaqabaGccqGH9aqpcaGGOaGaaGymaiabgUcaRiabeg7a HjaacMcacaGGOaGaeqiTdqMaey4kaSIaeqySdeMaeqiTdqMaey4kaS IaeqySdeMaeqOSdiMaey4kaSIaeq4SdCMaaiykaiabeo8aZnaaDaaa leaacqaH3oaAaeaacaaIYaaaaaGcbaGaaeODamaaBaaaleaacaaI0a GaaGinaaqabaGccqGH9aqpdaqadaqaaiaaigdacqGHRaWkcqaHXoqy aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqaHdpWCdaqhaa WcbaGaeq4TdGgabaGaaGOmaaaaaaaa@85A6@