Skip to content
RDP 8601: Classical Models and Unobserved Aggregates
Equation
v
11
=
(
1
/
σ
s
2
)
{
σ
d
2
σ
μ
2
+
W(
σ
d
2
+
σ
μ
2
)
}
+
σ
μ
2
+
β
2
σ
d
2
+
(
1
+
β
)
2
W
v
21
=
−
(
α
/
σ
s
2
)
{
σ
d
2
σ
μ
2
+
W
(
σ
d
2
+
σ
μ
2
)
}
+
σ
μ
2
+
β
γ
σ
d
2
+
(
1
+
β
)
(
1
+
γ
)
W
v
22
=
−
(
α
2
/
σ
s
2
)
{
σ
d
2
σ
μ
2
+
W
(
σ
d
2
+
σ
μ
2
)
}
+
σ
μ
2
+
γ
2
σ
d
2
+
(
1
+
γ
)
2
W
v
31
=
−
β
σ
d
2
−
(
1
+
β
)
W
v
32
=
−
γ
σ
d
2
−
(
1
+
γ
)
W
v
33
=
σ
d
2
+
W
v
41
=
−
σ
μ
2
+
β
δ
σ
d
2
−
(
1
+
β
)
(
1
−
δ
)
W
v
42
=
−
σ
μ
2
+
γ
δ
σ
d
2
−
(
1
+
γ
)
(
1
−
δ
)
W
v
43
=
−
δ
σ
d
2
+
(
1
−
δ
)
W
v
44
=
(
1
/
σ
n
2
)
{
σ
d
2
σ
μ
2
+
W
(
σ
d
2
+
σ
μ
2
)
}
+
σ
μ
2
+
δ
2
σ
d
2
+
(
1
+
δ
)
2
W
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqG2b WaaWbaaSqabeaacaaIXaGaaGymaaaakiabg2da9iaacIcacaaIXaGa ai4laiabeo8aZnaaDaaaleaacaWGZbaabaGaaGOmaaaakiaacMcada Gadaqaaiabeo8aZnaaDaaaleaacaWGKbaabaGaaGOmaaaakiabeo8a ZnaaDaaaleaadaahaaadbeqaaiabeY7aTbaaaSqaaiaaikdaaaGccq GHRaWkcaqGxbGaaeikaiadmciHdpWCdGaJa2baaSqaiWiGcGaJaoiz aaqaiWiGcGaJaIOmaaaakiabgUcaRiabeo8aZnaaDaaaleaadaahaa adbeqaaiabeY7aTbaaaSqaaiaaikdaaaGccaqGPaaacaGL7bGaayzF aaGaey4kaSIaeq4Wdm3aa0baaSqaamaaCaaameqabaGaeqiVd0gaaa WcbaGaaGOmaaaakiabgUcaRiabek7aInaaCaaaleqabaGaaGOmaaaa kiabeo8aZnaaDaaaleaacaWGKbaabaGaaGOmaaaakiabgUcaRmaabm aabaGaaGymaiabgUcaRiabek7aIbGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiaabEfaaeaacaqG2bWaaWbaaSqabeaacaaIYaGaaG ymaaaakiabg2da9iabgkHiTiaacIcacqaHXoqycaGGVaGaeq4Wdm3a a0baaSqaaiaadohaaeaacaaIYaaaaOGaaiykamaacmaabaGaeq4Wdm 3aa0baaSqaaiaadsgaaeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaamaa CaaameqabaGaeqiVd0gaaaWcbaGaaGOmaaaakiabgUcaRiaabEfada qadaqaaiadmciHdpWCdGaJa2baaSqaiWiGcGaJaoizaaqaiWiGcGaJ aIOmaaaakiabgUcaRiabeo8aZnaaDaaaleaadaahaaadbeqaaiabeY 7aTbaaaSqaaiaaikdaaaaakiaawIcacaGLPaaaaiaawUhacaGL9baa cqGHRaWkcqaHdpWCdaqhaaWcbaWaaWbaaWqabeaacqaH8oqBaaaale aacaaIYaaaaOGaey4kaSIaeqOSdiMaeq4SdCMaeq4Wdm3aa0baaSqa aiaadsgaaeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaaIXaGaey4kaS IaeqOSdigacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeq4S dCgacaGLOaGaayzkaaGaae4vaaqaaiaabAhadaahaaWcbeqaaiaaik dacaaIYaaaaOGaeyypa0JaeyOeI0Iaaiikaiabeg7aHnaaCaaaleqa baGaaGOmaaaakiaac+cacqaHdpWCdaqhaaWcbaGaam4Caaqaaiaaik daaaGccaGGPaWaaiWaaeaacqaHdpWCdaqhaaWcbaGaamizaaqaaiaa ikdaaaGccqaHdpWCdaqhaaWcbaWaaWbaaWqabeaacqaH8oqBaaaale aacaaIYaaaaOGaey4kaSIaae4vamaabmaabaGamWiGeo8aZnacmcyh aaWcbGaJakacmc4GKbaabGaJakacmciIYaaaaOGaey4kaSIaeq4Wdm 3aa0baaSqaamaaCaaameqabaGaeqiVd0gaaaWcbaGaaGOmaaaaaOGa ayjkaiaawMcaaaGaay5Eaiaaw2haaiabgUcaRiabeo8aZnaaDaaale aadaahaaadbeqaaiabeY7aTbaaaSqaaiaaikdaaaGccqGHRaWkcqaH ZoWzdaahaaWcbeqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaamizaa qaaiaaikdaaaGccqGHRaWkdaqadaqaaiaaigdacqGHRaWkcqaHZoWz aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaqGxbaabaGaae ODamaaCaaaleqabaGaaG4maiaaigdaaaGccqGH9aqpcqGHsislcqaH YoGycqaHdpWCdaqhaaWcbaGaamizaaqaaiaaikdaaaGccqGHsislca GGOaGaaGymaiabgUcaRiabek7aIjaacMcacaGGxbaabaGaaeODamaa CaaaleqabaGaaG4maiaaikdaaaGccqGH9aqpcqGHsislcqaHZoWzcq aHdpWCdaqhaaWcbaGaamizaaqaaiaaikdaaaGccqGHsislcaGGOaGa aGymaiabgUcaRiabeo7aNjaacMcacaGGxbaabaGaaeODamaaCaaale qabaGaaG4maiaaiodaaaGccqGH9aqpcqaHdpWCdaqhaaWcbaGaamiz aaqaaiaaikdaaaGccqGHRaWkcaGGxbaabaGaaeODamaaCaaaleqaba GaaGinaiaaigdaaaGccqGH9aqpcqGHsislcqaHdpWCdaqhaaWcbaGa eqiVd0gabaGaaGOmaaaakiabgUcaRiabek7aIjabes7aKjabeo8aZn aaDaaaleaacaWGKbaabaGaaGOmaaaakiabgkHiTiaacIcacaaIXaGa ey4kaSIaeqOSdiMaaiykaiaacIcacaaIXaGaeyOeI0IaeqiTdqMaai ykaiaacEfaaeaacaqG2bWaaWbaaSqabeaacaaI0aGaaGOmaaaakiab g2da9iabgkHiTiabeo8aZnaaDaaaleaacqaH8oqBaeaacaaIYaaaaO Gaey4kaSIaeq4SdCMaeqiTdqMaeq4Wdm3aa0baaSqaaiaadsgaaeaa caaIYaaaaOGaeyOeI0IaaiikaiaaigdacqGHRaWkcqaHZoWzcaGGPa GaaiikaiaaigdacqGHsislcqaH0oazcaGGPaGaai4vaaqaaiaabAha daahaaWcbeqaaiaaisdacaaIZaaaaOGaeyypa0JaeyOeI0IaeqiTdq Maeq4Wdm3aa0baaSqaaiaadsgaaeaacaaIYaaaaOGaey4kaSIaaiik aiaaigdacqGHsislcqaH0oazcaGGPaGaai4vaaqaaiaabAhadaahaa WcbeqaaiaaisdacaaI0aaaaOGaeyypa0ZaaeWaaeaacaaIXaGaai4l aiabeo8aZnaaDaaaleaacaWGUbaabaGaaGOmaaaaaOGaayjkaiaawM caamaacmaabaGaeq4Wdm3aa0baaSqaaiaadsgaaeaacaaIYaaaaOGa eq4Wdm3aa0baaSqaamaaCaaameqabaGaeqiVd0gaaaWcbaGaaGOmaa aakiabgUcaRiaabEfadaqadaqaaiadmciHdpWCdGaJa2baaSqaiWiG cGaJaoizaaqaiWiGcGaJaIOmaaaakiabgUcaRiabeo8aZnaaDaaale aadaahaaadbeqaaiabeY7aTbaaaSqaaiaaikdaaaaakiaawIcacaGL PaaaaiaawUhacaGL9baacqGHRaWkcqaHdpWCdaqhaaWcbaWaaWbaaW qabeaacqaH8oqBaaaaleaacaaIYaaaaOGaey4kaSIaeqiTdq2aaWba aSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaaiaadsgaaeaacaaIYa aaaOGaey4kaSYaaeWaaeaacaaIXaGaey4kaSIaeqiTdqgacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaOGaae4vaaaaaa@9EF1@