Skip to content
RDP 9704: Financial Aggregates as Conditioning Information for Australian Output and Inflation
Equation (1)
π
t
=
α
1
+
∑
i
=
1
4
β
1
i
π
t
−
i
+
∑
i
=
1
4
φ
1
i
y
t
−
i
+
∑
i
=
1
4
γ
1
i
i
t
−
i
+
∑
i
=
1
4
ϑ
1
i
m
t
−
i
+
u
1
t
y
t
=
α
2
+
∑
i
=
1
4
β
2
i
π
t
−
i
+
∑
i
=
1
4
φ
2
i
y
t
−
i
+
∑
i
=
1
4
γ
2
i
i
t
−
i
+
∑
i
=
1
4
ϑ
2
i
m
t
−
i
+
u
2
t
i
t
=
α
3
+
∑
i
=
1
4
β
3
i
π
t
−
i
+
∑
i
=
1
4
φ
3
i
y
t
−
i
+
∑
i
=
1
4
γ
3
i
i
t
−
i
+
∑
i
=
1
4
ϑ
3
i
m
t
−
i
+
u
3
t
m
t
=
α
4
+
∑
i
=
1
4
β
4
i
π
t
−
i
+
∑
i
=
1
4
φ
4
i
y
t
−
i
+
∑
i
=
1
4
γ
4
i
i
t
−
i
+
∑
i
=
1
4
ϑ
4
i
m
t
−
i
+
u
4
t
,
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaeqiWda3aaSbaaSqaaiaadshaaeqaaOGaeyypa0JaeqySde2a aSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaabCaeaacqaHYoGydaWgaa WcbaGaaGymaiaadMgaaeqaaOGaeqiWda3aaSbaaSqaaiaadshacqGH sislcaWGPbaabeaakiabgUcaRaWcbaGaamyAaiabg2da9iaaigdaae aacaaI0aaaniabggHiLdGcdaaeWbqaaiabeA8aQnaaBaaaleaacaaI XaGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadshacqGHsislcaWGPb aabeaakiabgUcaRmaaqahabaGaeq4SdC2aaSbaaSqaaiaaigdacaWG PbaabeaakiaadMgadaWgaaWcbaGaamiDaiabgkHiTiaadMgaaeqaaO Gaey4kaSYaaabCaeaacqaHrpGsdaWgaaWcbaGaaGymaiaadMgaaeqa aOGaamyBamaaBaaaleaacaWG0bGaeyOeI0IaamyAaaqabaGccqGHRa WkcaWG1bWaaSbaaSqaaiaaigdacaWG0baabeaaaeaacaWGPbGaeyyp a0JaaGymaaqaaiaaisdaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpca aIXaaabaGaaGinaaqdcqGHris5aaWcbaGaamyAaiabg2da9iaaigda aeaacaaI0aaaniabggHiLdaakeaacaWG5bWaaSbaaSqaaiaadshaae qaaOGaeyypa0JaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSYa aabCaeaacqaHYoGydaWgaaWcbaGaaGOmaiaadMgaaeqaaOGaeqiWda 3aaSbaaSqaaiaadshacqGHsislcaWGPbaabeaakiabgUcaRaWcbaGa amyAaiabg2da9iaaigdaaeaacaaI0aaaniabggHiLdGcdaaeWbqaai abeA8aQnaaBaaaleaacaaIYaGaamyAaaqabaGccaWG5bWaaSbaaSqa aiaadshacqGHsislcaWGPbaabeaakiabgUcaRmaaqahabaGaeq4SdC 2aaSbaaSqaaiaaikdacaWGPbaabeaakiaadMgadaWgaaWcbaGaamiD aiabgkHiTiaadMgaaeqaaOGaey4kaSYaaabCaeaacqaHrpGsdaWgaa WcbaGaaGOmaiaadMgaaeqaaOGaamyBamaaBaaaleaacaWG0bGaeyOe I0IaamyAaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaikdacaWG0b aabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaaisdaa0GaeyyeIuoa aSqaaiaadMgacqGH9aqpcaaIXaaabaGaaGinaaqdcqGHris5aaWcba GaamyAaiabg2da9iaaigdaaeaacaaI0aaaniabggHiLdaakeaacaWG PbWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaeqySde2aaSbaaSqaai aaiodaaeqaaOGaey4kaSYaaabCaeaacqaHYoGydaWgaaWcbaGaaG4m aiaadMgaaeqaaOGaeqiWda3aaSbaaSqaaiaadshacqGHsislcaWGPb aabeaakiabgUcaRaWcbaGaamyAaiabg2da9iaaigdaaeaacaaI0aaa niabggHiLdGcdaaeWbqaaiabeA8aQnaaBaaaleaacaaIZaGaamyAaa qabaGccaWG5bWaaSbaaSqaaiaadshacqGHsislcaWGPbaabeaakiab gUcaRmaaqahabaGaeq4SdC2aaSbaaSqaaiaaiodacaWGPbaabeaaki aadMgadaWgaaWcbaGaamiDaiabgkHiTiaadMgaaeqaaOGaey4kaSYa aabCaeaacqaHrpGsdaWgaaWcbaGaaG4maiaadMgaaeqaaOGaamyBam aaBaaaleaacaWG0bGaeyOeI0IaamyAaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaaiodacaWG0baabeaaaeaacaWGPbGaeyypa0JaaGymaa qaaiaaisdaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIXaaabaGa aGinaaqdcqGHris5aaWcbaGaamyAaiabg2da9iaaigdaaeaacaaI0a aaniabggHiLdaakeaacaWGTbWaaSbaaSqaaiaadshaaeqaaOGaeyyp a0JaeqySde2aaSbaaSqaaiaaisdaaeqaaOGaey4kaSYaaabCaeaacq aHYoGydaWgaaWcbaGaaGinaiaadMgaaeqaaOGaeqiWda3aaSbaaSqa aiaadshacqGHsislcaWGPbaabeaakiabgUcaRaWcbaGaamyAaiabg2 da9iaaigdaaeaacaaI0aaaniabggHiLdGcdaaeWbqaaiabeA8aQnaa BaaaleaacaaI0aGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadshacq GHsislcaWGPbaabeaakiabgUcaRmaaqahabaGaeq4SdC2aaSbaaSqa aiaaisdacaWGPbaabeaakiaadMgadaWgaaWcbaGaamiDaiabgkHiTi aadMgaaeqaaOGaey4kaSYaaabCaeaacqaHrpGsdaWgaaWcbaGaaGin aiaadMgaaeqaaOGaamyBamaaBaaaleaacaWG0bGaeyOeI0IaamyAaa qabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaisdacaWG0baabeaaaeaa caWGPbGaeyypa0JaaGymaaqaaiaaisdaa0GaeyyeIuoaaSqaaiaadM gacqGH9aqpcaaIXaaabaGaaGinaaqdcqGHris5aaWcbaGaamyAaiab g2da9iaaigdaaeaacaaI0aaaniabggHiLdaaaaaa@41A4@