Skip to content
RDP 9809: Estimating Output Gaps
Equation (A.4)
[
μ
t
y
μ
t
π
y
t
p
z
t
z
t
−
1
θ
t
ω
t
]
=
[
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
ϕ
1
ϕ
2
0
0
0
0
0
1
0
0
0
0
1
0
β
0
δ
1
δ
2
0
0
0
0
0
1
0
]
[
μ
t
−
1
y
μ
t
−
1
π
y
t
−
1
p
z
t
−
1
z
t
−
2
θ
t
−
1
ω
t
−
1
]
+
[
0
0
0
0
0
(
1
−
δ
1
−
δ
2
)
π
t
−
2
*
0
]
+
[
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
0
0
]
[
ε
t
y
ε
t
z
ε
t
π
]
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafa qabeWbbaaaaeaacqaH8oqBdaqhaaWcbaGaamiDaaqaaiaadMhaaaaa keaacqaH8oqBdaqhaaWcbaGaamiDaaqaaiabec8aWbaaaOqaaiaadM hadaqhaaWcbaGaamiDaaqaaiaadchaaaaakeaacaWG6bWaaSbaaSqa aiaadshaaeqaaaGcbaGaamOEamaaBaaaleaacaWG0bGaeyOeI0IaaG ymaaqabaaakeaacqaH4oqCdaWgaaWcbaGaamiDaaqabaaakeaacqaH jpWDdaWgaaWcbaGaamiDaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0 ZaamWaaeaafaqabeWbhaaaaaqaaiaaigdaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIXaaabaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiabew9aMnaaBaaaleaacaaIXaaabeaaaOqaaiabew 9aMnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiab ek7aIbqaaiaaicdaaeaacqaH0oazdaWgaaWcbaGaaGymaaqabaaake aacqaH0oazdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIWa aaaaGaay5waiaaw2faamaadmaabaqbaeqabCqaaaaabaGaeqiVd02a a0baaSqaaiaadshacqGHsislcaaIXaaabaGaamyEaaaaaOqaaiabeY 7aTnaaDaaaleaacaWG0bGaeyOeI0IaaGymaaqaaiabec8aWbaaaOqa aiaadMhadaqhaaWcbaGaamiDaiabgkHiTiaaigdaaeaacaWGWbaaaa GcbaGaamOEamaaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaaakeaa caWG6bWaaSbaaSqaaiaadshacqGHsislcaaIYaaabeaaaOqaaiabeI 7aXnaaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaaakeaacqaHjpWD daWgaaWcbaGaamiDaiabgkHiTiaaigdaaeqaaaaaaOGaay5waiaaw2 faaiabgUcaRmaadmaabaqbaeqabCqaaaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaadaqadaqaaiaaigdacq GHsislcqaH0oazdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH0oaz daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqaHapaCdaqhaa WcbaGaamiDaiabgkHiTiaaikdaaeaacaGGQaaaaaGcbaGaaGimaaaa aiaawUfacaGLDbaacqGHRaWkdaWadaqaauaabeqahmaaaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa aaaiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacqaH1oqzdaqh aaWcbaGaamiDaaqaaiaadMhaaaaakeaacqaH1oqzdaqhaaWcbaGaam iDaaqaaiaadQhaaaaakeaacqaH1oqzdaqhaaWcbaGaamiDaaqaaiab ec8aWbaaaaaakiaawUfacaGLDbaaaaa@D8EC@