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Abstract

We present a simple model of the macroeconomy that includes a role for an asset-
price bubble, and derive optimal monetary policy settings for two policy-makers.
The first policy-maker, a sceptic, does not attempt to forecast the future possible
paths for the asset-price bubble when setting policy. The second policy-maker,
an activist, takes into account the complete stochastic implications of the bubble
when setting policy.

We examine the optimal policy recommendations of these two policy-makers
across a range of plausible assumptions about the bubble. We show that the optimal
monetary policy recommendations of the activist depend on the detailed stochastic
properties of the bubble. There are some circumstances in which the activist
clearly recommends tighter policy than that of the sceptic, while in other cases, the
appropriate recommendation is to be looser than the sceptic. Other things equal,
the case for ‘leaning against’ a bubble with monetary policy is stronger the lower
the probability of the bubble bursting of its own accord, the larger the efficiency
losses associated with big bubbles, and the higher the assumed impact of monetary
policy on the bubble process.
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HOW SHOULD MONETARY POLICY RESPOND TO
ASSET-PRICE BUBBLES?

David Gruen, Michael Plumb and Andrew Stone

1. Introduction

Asset-price bubbles pose difficult problems for monetary policy, and despite
considerable debate no consensus has yet emerged on the appropriate strategy for
monetary policy-makers in the presence of such bubbles.

Different views about the appropriate role of monetary policy in the presence
of asset-price bubbles do not arise primarily because of differences about the
objectives of monetary policy. These objectives, it is usually agreed, are to
maintain low inflation and to limit the volatility of inflation and output, thereby
contributing to stability in both the macroeconomy and the financial system.
Rather, the different views are about how best to achieve these objectives.

One view is that monetary policy should do no more than follow the standard
precepts of inflation targeting. Proponents of this view would acknowledge that
rising asset prices often have expansionary effects on the economy, and might
sometimes also provide a signal for incipient inflationary pressures, so that some
tightening of monetary policy might be appropriate. According to this view,
however, policy should only respond to observed changes in asset prices to the
extent that they signal current or future changes to inflation or the output gap.
There should be no attempt to use policy either to gently lean against a suspected
asset-price bubble while it is growing or, more aggressively, to try to burst it. This
view of the appropriate monetary policy response to asset-price bubbles has been
put recently by Bernanke (2002).

An alternative view is that monetary policy should aim to do more than respond
to actual and expected developments in inflation and the output gap. Cecchetti,
Genberg and Wadhwani (2003), prominent proponents of this alternative view,
put the argument in these terms:
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... central banks seeking to smooth output and inflation fluctuations can improve ...
macroeconomic outcomes by setting interest rates with an eye toward asset prices
in general, and misalignments in particular ... Raising interest rates modestly as
asset prices rise above what are estimated to be warranted levels, and lowering
interest rates modestly when asset prices fall below warranted levels, will tend
to offset the impact on output and inflation of [asset-price] bubbles, thereby
enhancing overall macroeconomic stability. In addition, if it were known that
monetary policy would act to ‘lean against the wind’ in this way, it might reduce
the probability of bubbles arising at all, which would also be a contribution to
greater macroeconomic stability. (p 429, italics added)1

We argue here that it is not clear that central banks should follow this advice.
There is no universally optimal response to bubbles, and the case for responding
to a particular asset-price bubble depends on the specific characteristics of the
bubble process.

We present a simple model of the macroeconomy that includes a role for an asset-
price bubble, and derive optimal monetary policy settings for two policy-makers.
The first policy-maker, a sceptic, makes no attempt to forecast future movements
in asset prices when setting policy, perhaps because she does not believe in the
existence of the bubble or, alternatively, does not believe that monetary policy
should actively respond to it. Her policy settings define the standard inflation-
targeting benchmark in our model. The second policy-maker, an activist, takes into
account the complete stochastic implications of the bubble when setting policy.

Once the bubble has formed, it is assumed to either grow each year with some
probability, or to collapse and disappear. Crucially, and realistically, monetary
policy in the model affects the economy with a lag, so that policy set today has its
initial impact on the economy next year, by which time the bubble will have either
grown further or collapsed.

For an activist policy-maker, it follows that there are two countervailing influences
on monetary policy in the presence of the bubble. On the one hand, policy

1 Cecchetti et al are careful to argue that monetary policy should not target asset prices. To quote
them again, ‘we are not advocating that asset prices should be targets for monetary policy,
neither in the conventional sense that they belong in the objective function of the central bank,
nor in the sense that they should be included in the inflation measure targeted by monetary
authorities’ (2003, p 429, italics in the original).
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should be tighter than the standard inflation-targeting benchmark to counter
the expansionary effects of future expected growth in the bubble and, in some
formulations, to raise the probability that the bubble will burst. On the other hand,
policy should be looser to prepare the economy for the possibility that the bubble
may have burst by the time policy is having its impact on the economy.

Which of these two influences dominates? For intermediate and larger bubbles
– which are of most importance to policy-makers – we argue that it depends on
the characteristics of the bubble process. There are circumstances in which the
activist should recommend tighter policy than the sceptic. This is likely to be the
appropriate activist advice when one or more of the following conditions applies:
the probability that the bubble will burst of its own accord over the next year is
assessed to be small; the bubble’s probability of bursting is quite interest sensitive;
efficiency losses associated with the bubble rise strongly with the bubble’s size;
or, the bubble’s demise is expected to occur gradually over an extended period,
rather than in a sudden bust.

Alternatively, however, when these conditions do not apply, it is more likely that
the activist should recommend looser policy than the sceptic. This result makes
clear that there is no single optimal rule for responding to all bubbles, and also
illustrates the quite high level of knowledge of the future stochastic properties of
the bubble that is required to set appropriate activist policy.

2. Model

Our model is an extension of the Ball (1999) model for a closed economy. In the
Ball model, the economy is described by two equations:

yt = −β rt−1 +λyt−1 (1)

πt = πt−1 +αyt−1 (2)

where y is the output gap, r is the difference between the real interest rate and its
neutral level, π is the difference between consumer-price inflation and its targeted
rate, and α , β , and λ are positive constants (with λ < 1 so that output gaps
gradually return to zero).

The Ball model has the advantage of simplicity and intuitive appeal. It makes the
simplifying assumption that policy-makers control the real interest rate, rather than
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the nominal one. It assumes, realistically, that monetary policy affects real output,
and hence the output gap, with a lag, and that the output gap affects inflation with
a further lag. The values for the parameters α , β , and λ that Ball chooses for the
model, and that we will also use here, imply that each period in the model is a year
in length.2

We augment the model with an asset-price bubble. We assume that in year 0, the
economy is in equilibrium, with both output and inflation at their target values,
y0 = π0 = 0 , and that the bubble has zero size, a0 = 0. In subsequent years, we
assume that the bubble evolves as follows:

at =
{

at−1 + γt , with probability 1− pt
0 , with probability pt .

(3)

Thus, in each year, the bubble either grows by an amount, γt > 0, or bursts and
collapses back to zero. For ease of exposition, in the rest of this section we will
assume that γt is constant, γt = γ , but we will allow for a range of alternative
possibilities in the results we report in Section 3. We also assume that once the
bubble has burst, it does not re-form. To allow for the effect of the bubble on the
economy, we modify Ball’s two-equation model to read:

yt = −β rt−1 +λyt−1 +∆at (4)

πt = πt−1 +αyt−1 . (5)

In each year that the bubble is growing it has an expansionary effect on the
economy, increasing the level of output, and the output gap, by γ . The bubble is,
however, assumed to have no direct effect on consumer price inflation, although
there will be consequences for inflation to the extent that the bubble leads the
economy to operate with excess demand as it expands, and with excess supply
when it bursts.

When the bubble bursts, the effect on the economy is of course contractionary – if
the bubble bursts in year t, the direct effect on output, and the output gap, in that
year will be ∆at =−(t−1)γ . Thus, the longer the bubble survives, the greater will
be the contractionary effect on the economy when it bursts.

2 Ball’s parameter values are α = 0.4, β = 1 and λ = 0.8. Ball also adds white-noise shocks to
each of his equations, which we have suppressed for simplicity.
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We will assume that the evolution of the economy can be described by this
simple three-equation system (Equations (3), (4) and (5)). But we distinguish
between two policy-makers: a sceptic who doesn’t try to second-guess asset-price
developments, and an activist who believes that she understands enough about
asset-price bubbles to set policy actively in response to them.3

We assume that the policy-makers observe in each year whether the bubble has
grown further, or collapsed, before setting the interest rate for that year. Given the
nature of the lags in the model, this year’s interest rate will have no impact on real
activity until next year, and on inflation until the year after that.

We also assume that the two policy-makers have the same preferences, and that
they care about the volatility of both inflation and output. Thus we assume that
in each year t, policy-maker p (activist or sceptic) sets the real interest rate, rt , to
minimise the weighted sum of the expected future squared deviations of inflation
and output from their target levels, or in symbols, sets rt to minimise

L =
∞∑

τ=t+1

[
E p

t (y2
τ)+ µE p

t (π2
τ )

]
(6)

where µ is the relative weight on the deviations of inflation and E p
t is the year t

expectation of policy-maker p. In the results we show in the paper, we set µ = 1,
so that policy-makers are assumed to care equally about deviations of inflation
from target and output from potential.

In setting policy each year, the sceptical policy-maker ignores the future stochastic
behaviour of the bubble. Since certainty equivalence holds in the model in this
setting, Ball (1999) shows that, for the assumed parameter values, optimal policy
takes the form

rt = 1.1yt +0.8πt (7)

which is a more aggressive Taylor rule than the ‘standard’ Taylor rule introduced
by Taylor (1993), rt = 0.5yt +0.5πt .

3 To draw the distinction more precisely, both policy-makers understand how the output gap
and inflation evolve over time, as summarised by Equations (4) and (5). The activist also
understands, and responds optimally to, the stochastic behaviour of the bubble, as summarised
by Equation (3). The sceptic, by contrast, responds to asset-bubble shocks, ∆at , when they
arrive, but assumes that the expected value of future shocks is zero.
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As the bubble grows, the sceptical policy-maker raises the real interest rate to
offset the bubble’s expansionary effects on the economy. But she does so in an
entirely reactive manner, ignoring any details about the bubble’s future evolution.
Once the bubble bursts, output falls precipitously and the sceptical policy-maker
eases aggressively, again in line with the dictates of the optimal policy rule,
Equation (7).4

We assume that the activist policy-maker learns about the bubble in year 0, and
hence takes the full stochastic nature of the bubble into account when setting the
policy rate, rt , from year 0 onwards. Once the bubble bursts, however, there is no
further uncertainty in the model, and the activist policy-maker simply follows the
modified Taylor rule, Equation (7), just like the sceptical policy-maker.

3. Results

In this section, we present optimal policy recommendations through time,
assuming that the bubble survives and grows. We focus on the growth phase of
the bubble’s life because it is of most policy interest, as it generates the most
disagreement about which policy approach is preferable. Once the bubble bursts,
by contrast, there is general agreement that it is appropriate to ease aggressively
to offset the contractionary effects of the bust.5

Our main aim is to compare the optimal policy recommendations of the sceptic
with those of an activist, over a range of plausible alternative assumptions about
the stochastic nature of the bubble. To do so in a meaningful way, it is necessary
that the two policy-makers face an economy in the same state in each year. Since
the current state of the economy depends on previous policy settings (as well as
on the evolution of the bubble) we will assume throughout that the policy settings
that are actually implemented each year are those chosen by the sceptic.

4 We implicitly assume that the zero lower bound on nominal interest rates is not breached when
policy is eased after the bubble bursts, so that the real interest rate can be set as low as required
by Equation (7).

5 For completeness, Appendix A shows optimal interest rate recommendations both before and
after the bursting of the bubble.
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We can then meaningfully ask each year: given the state of the economy, what are
the current optimal policy recommendations made by the different policy-makers?
The activist’s recommendations will depend on the assumptions she makes about
the future possible paths of the bubble, while the sceptic’s will not, since she
assumes that future asset-price shocks have no expected effects.

3.1 Baseline Results: Policy Cannot Affect the Bubble

We begin with some simple baseline results. For these results, we assume that
the bubble’s direct expansionary effect on output in each year of its growth is a
constant 1 per cent (i.e., γt = 1). Figure 1 shows the optimal policy choices made
by the sceptic and two activists. We focus first on the sceptic, and then on the
activists.

Figure 1: Real Interest Rate Recommendations While the Bubble Survives
Policy has no effect on the bubble
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Since the sceptic assumes that future asset-price shocks have no expected effects,
she responds to the bubble only when its initial expansionary effects are manifest
in year 1. As time proceeds and the bubble grows, she sets the policy interest rate
in line with Equation (7), which is optimal given her beliefs about future asset-
price shocks. Of course, were the bubble to burst, she would ease immediately
(see Appendix A for further details).

An activist, deciding on optimal policy in year t, understands that if the bubble
continues to grow, its direct effect on output next year will be +1 per cent, while
if it bursts, the direct effect next year will be −at per cent. If the probability of
bursting each year is a constant, p∗, the bubble’s expected direct effect on output
next year is (1− p∗)− p∗at .

Certainty equivalence applies to this baseline version of the model.6 It follows that
the difference between the policy interest rates recommended by the activist, rac

t ,
and the sceptic, rsc

t , depends only on their different assessments of the expected
effect of the bubble on output next year. With the sceptic assuming that the bubble
will have no expected effect on output next year, it follows that

rac
t − rsc

t = (1− p∗)− p∗at . (8)

Equation (8) implies that the activist will recommend tighter (easier) policy than
the sceptic whenever, in probability-weighted terms, the expansionary effect on
real activity from the bubble surviving is greater (less) than the contractionary
effect from the bubble collapsing.

6 The model set-up is more complex than the standard set-up in which certainty equivalence
applies. This is because, once the bubble bursts, there are no further asset-bubble shocks and
hence, ex ante, the distribution of shocks is not independent through time. It is, therefore, not
straightforward to demonstrate certainty equivalence. Nevertheless, Equation (8) in the text
does follow and can be generalised to allow for alternative parameter values, time-varying
bubble growth and/or probabilities of bubble collapse, provided that the evolution of the
bubble remains independent of the actions of the policy-makers. The generalised equation is
rac
t − rsc

t = β−1[(1− pt+1)γt+1 − pt+1at ] which, in particular, implies that (rac
t − rsc

t ) does not
depend on α , λ or µ . A proof of this equation is provided in Appendix C.
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For the results shown in Figure 1, we assume that the only difference between the
two activists is that one assesses the probability that the bubble will burst each
year as pt = p∗ = 0.2 (the ‘durable-bubble activist’), while the other assesses it as
pt = p∗ = 0.4 (the ‘transient-bubble activist’).7

In terms of their optimal policy recommendations, the two activists agree that
policy should be tighter than the settings chosen by the sceptic for the first
couple of years of the bubble’s growth (including year 0, since that is when they
learn about the bubble). Although they disagree about the details, they share the
assessment that the continued probable growth of the bubble is a more important
consideration for policy than the bubble’s possible collapse.

The activists both understand, however, that as time proceeds, the bubble is getting
bigger and the size of the prospective bust is also getting bigger. As a consequence,
if the bubble survives for more than a year or two, the two activists no longer agree
about whether policy should be tighter or looser than the modified Taylor-rule
settings chosen by the sceptic. The durable-bubble activist recommends tighter
policy because she assesses the probability of the bubble bursting to be small, but
the transient-bubble activist recommends looser policy because her assessment is
that this probability is larger.

If the bubble survives for long enough the two activists will again concur at least
in the direction of their policy advice – they will both recommend looser policy
than the sceptic because the possibility of the by-now-bigger bubble collapsing
eventually dominates for them both.

In this case, then, the policy recommendations of an activist – and even whether
she recommends tighter or looser policy than the benchmark settings chosen by
the sceptic – depend crucially on her assessment of the probability that the bubble
will collapse of its own accord. This is an important example of the general point
that the activist’s policy advice will depend critically on the detailed assumptions

7 Assuming pt = 0.2 implies an average remaining life for the bubble of five years, while pt = 0.4
implies an average remaining life of two and a half years.
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she makes about the stochastic properties of the bubble. This is the central insight
of the paper. We now show the relevance of this insight across a wide range of
alternative assumptions about the bubble’s stochastic behaviour.

3.2 Sensitivity Analysis8

3.2.1 Policy affects the probability that the bubble will burst

An obvious extension to the model is to assume that by setting tighter policy this
year, the policy-maker can raise the probability that the bubble will burst next
year. For simplicity, we initially assume a linear relationship between the interest
rate and the probability of the bubble bursting:

pt = p∗+δ (rt−1 − r∗t−1) . (9)

We assume that δ = 0.1, so that a 1 percentage point rise in the real interest rate
this year raises the probability of the bubble bursting next year by 0.1, subject to
the constraint that 0 ≤ pt ≤ 1. The path of interest rates, r∗t , t ≥ 0, is the optimal
path chosen by the sceptical policy-maker.9

As before, we assume that the bubble’s direct expansionary effect on output in
each year of its growth is a constant 1 per cent (i.e., γt = 1). Figure 2 shows
the optimal policy recommendations made by the sceptic and two activists. The
two activists again differ only in their assessment of the bubble’s probability
of collapse. Both believe that this probability is given by Equation (9), but the

8 Most of the extensions we examine in this section imply that certainty equivalence no longer
applies to the model (the exceptions are the bubble that collapses over two or more years and
the rational bubble), in which case the results must be derived by numerical optimisation. To
simplify the numerical problems, we assume that if the bubble survives until year 14 (which is
a very unlikely event for all the parameter values we consider) then it bursts with certainty in
that year. For earlier years, this assumption is only relevant for the policy choices of the activist
policy-maker.

9 We choose the functional form in Equation (9) so that, for the benchmark policy settings chosen
by the sceptic, pt = p∗ for all t. The results generated using an alternative functional form,
pt = p∗ +δ rt−1, are qualitatively very similar to those shown.
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durable-bubble activist believes that p∗ = 0.2, while the transient-bubble activist
believes that p∗ = 0.4.

The sceptic’s optimal policy profile is the same as in Figure 1, because she ignores
the future stochastic details of the bubble. By contrast, it is optimal for the activists
to recommend tighter policy than they would recommend if they had no influence
on the bubble, as can be seen by comparing the activist profiles in Figures 1 and 2.
By tightening somewhat, the activists reduce the probability that the bubble will
grow further and be more disruptive to the economy when it ultimately bursts.
Nevertheless, the optimal policy continues to depend, sensitively, on the activist’s
assessment of the bubble’s probability of collapse, just as it did when the activists
could not affect the bubble.

Figure 2: Real Interest Rate Recommendations While the Bubble Survives
Policy affects the bubble’s probability of bursting
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It is also of interest to see how the results change when we vary the sensitivity to
interest rates of the bubble’s probability of collapse. For this exercise, we assume
a monotonically increasing, but non-linear, relationship between interest rates and
this probability, to avoid a corner-solution problem with the linear form (explained
shortly). The relationship we assume is

pt =
1

1+ ea(rt−1−r∗t−1)+b
(10)

where a = −δ/(p∗(1− p∗)) and b = ln((1− p∗)/p∗). For this functional form,
pt = p∗ when rt−1 = r∗t−1 and ∂ pt/∂ (rt−1 − r∗t−1) = δ when this derivative is
evaluated at rt−1 = r∗t−1. These two features are also features of the linear form,
Equation (9). The advantage of the non-linear form, Equation (10), is that, while
raising last year’s interest rate, rt−1, raises the probability that the bubble will burst
this year, pt , it cannot drive that probability to one, as can occur with the linear
form.10

Figure 3 shows a comparison of optimal interest rate recommendations for the
sceptic and three activists. The activists assume that the bubble’s probability of
bursting is given by Equation (10) with p∗ = 0.4 (except p14 = 1), but they assume
three different degrees of interest-rate sensitivity: δ = 0.1, δ = 0.2 or δ = 0.3.

The pattern of optimal interest rate recommendations is somewhat similar to those
in Figures 1 and 2. When the bubble is very small, the activists all agree that policy
should be tighter than the setting chosen by the sceptic. But this consensus among
the activists evaporates as the bubble gets bigger, and from year 2 onward, first
one and then two of the three activists recommend looser policy than the sceptic,
while the activist who believes that the bubble is highly interest sensitive (δ = 0.3)
continues to recommend tighter policy, at least until year 6.

10 It seems implausible that moderate rises in the real interest rate would burst the bubble with
certainty; yet that is an implication of the linear form, Equation (9). Simulations of the linear
model with δ > 0.1 do indeed generate this outcome (results not shown). It is for this reason
that we use the non-linear form for simulations with δ > 0.1. As argued by Stockton (2003),
one could also imagine that the relationship between the bubble’s probability of collapse and
the policy interest rate might be non-monotonic, with small interest rate rises lowering the
subsequent probability of collapse. This would undoubtedly further complicate the optimal
policy recommendations of an activist.



13

Figure 3: Real Interest Rate Recommendations While the Bubble Survives
Varying the interest sensitivity of the probability of bursting
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3.2.2 Allowing for efficiency losses

A second natural extension is to allow for efficiency losses associated with the
bubble. There are two broad ways to motivate the idea of efficiency losses.
They can be motivated in terms of the economically inefficient physical over-
investment that is put in place in response to asset-price rises that are not based
on fundamentals, or in terms of the damage done to the financial system when the
bubble bursts.

Either way, it seems plausible that the efficiency losses rise with the size of the
bubble. To account for these losses, we re-formulate the policy problem as setting
rt to minimise

L = E p
t [max(aτ)]

κ +
∞∑

τ=t+1

[
E p

t (y2
τ)+E p

t (π2
τ )

]
(11)
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where we assume that the efficiency losses rise either linearly with the maximum
size of the bubble (κ = 1) or with the square of this maximum size (quadratic case,
κ = 2). We also assume, as before, that the relative weight on inflation deviations,
µ , takes a value of one. Since the sceptic ignores the bubble, we assume for her
that Esc

t [max(aτ)]
κ = 0.

Figure 4 shows a comparison of optimal interest rate settings for the sceptic and
three activists. The activists all assume that the bubble’s probability of bursting is
given by Equation (10) with p∗ = 0.4, and with interest-rate sensitivity, δ = 0.2.
The first activist, however, makes no allowance for efficiency losses, and hence
minimises the standard loss function, Equation (6). The second activist assumes
linear efficiency losses, while the third assumes quadratic losses, and so they
minimise the loss function, Equation (11), assuming appropriate values for κ .

Figure 4: Real Interest Rate Recommendations While the Bubble Survives
Allowing for efficiency losses associated with the bubble
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As previous figures have shown, being able to raise the probability of the
bubble bursting gives an incentive to the activist policy-maker to tighten policy
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somewhat. Figure 4 shows that taking account of efficiency losses associated
with an asset-price bubble raises this incentive further, and therefore further raises
the optimal interest rate recommendations of the activist. Moreover, if efficiency
losses associated with the bubble are assumed to rise sufficiently rapidly with the
maximum size of the bubble, then the incentive for the activist to recommend
tighter policy than the sceptic is a strong one.

3.2.3 Policy affects the bubble’s growth

A further natural extension to the simple version of the model involves assuming
that, rather than affecting the probability of the bubble bursting, the activist policy-
maker can, by setting tighter policy this year, reduce the extent of the bubble’s
growth next year if it survives. For the simulations we show for this case, we
assume that pt = p∗ = 0.4 (except p14 = 1) and that

γt = 1−φ(rt−1− r∗t−1) . (12)

For reasons we discuss shortly, only large values of the parameter φ generate
significantly changed behaviour by the activist policy-maker. We therefore assume
that φ = 1, so that by setting policy 1 percentage point higher than the sceptic this
year, the bubble’s growth next year is reduced from 1 per cent to nothing.11 As
above, the path of interest rates defined by r∗t , t ≥ 0, is the optimal path chosen by
the sceptical policy-maker assuming γt = 1.

Figure 5 shows a comparison of optimal interest rate recommendations for the
sceptic and two activists. Both activists assume that the bubble’s growth is given
by Equation (12), but one assumes no interest-rate sensitivity, φ = 0, while the
other assumes high sensitivity, φ = 1.12

For every year apart from year 0, being able to reduce the bubble’s growth induces
the activist policy-maker to recommend tighter policy than she otherwise would.

11 If the bubble survives, it would again be necessary to set policy 1 percentage point higher than
the sceptic to ensure that the bubble did not grow in the subsequent year. Given the effects of
continually tight policy on the rest of the economy, it is perhaps not surprising that being able to
raise the probability that the bubble will burst has more influence on optimal policy than simply
being able to reduce its growth each year by setting tighter policy in each previous year.

12 The results assuming no interest-rate sensitivity are equivalent to the baseline results shown in
Figure 1 for the activist assuming pt = 0.4.
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Figure 5: Real Interest Rate Recommendations While the Bubble Survives
Policy affects the bubble’s growth
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The differences in the policy recommendations induced by this expectation are,
however, less pronounced than the differences that arise when an activist policy-
maker assesses the probability that the bubble will burst each year at pt = 0.2
rather than pt = 0.4, as can be seen by comparing Figures 1 and 5.

3.2.4 Bubbles that take two or more years to collapse

Another extension to the basic model involves assuming that, when the bubble
collapses, it does so evenly over two or more years, rather than suddenly in one. In
the examples we have examined until now, the activist must always confront the
problem that, owing to the lag structure of the Ball model, policy can only respond
to a collapsing bubble after the collapse is complete. This problem is reduced by
assuming that the collapse occurs over two or more years rather than one.
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Figure 6 shows results for the sceptic and two activists (one who assumes gradual,
even, two-year collapse; the other, sudden), assuming that pt = p∗ = 0.4 (except
p14 = 1) and that γt = 1. The activist who assumes that the bubble will collapse
only gradually recommends tighter policy than the one who assumes that it will
be sudden, because of their different assessments of the bubble’s expected effect
on next year’s output.

Figure 6: Real Interest Rate Recommendations While the Bubble Survives
Bubble takes two years to collapse
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Nevertheless, the overall pattern of policy recommendations remains similar to
earlier cases. As the size of the bubble grows, the ‘gradually-bursting’ activist
eventually recommends looser policy than the sceptic does, for reasons that are by
now familiar.

In cases in which the bubble is expected to collapse evenly over three or more
years, the activist would recommend tighter policy than the sceptic for longer,
while the bubble is growing, a result that follows from a straightforward extension
to Equation (8).
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3.2.5 A rational bubble

In the baseline results presented at the beginning of the section, we assumed that
the asset-price bubble grew at a uniform rate, γt = 1, and that the probability of
the bubble’s collapse was constant through time. This seems to us a simple and
intuitively appealing baseline case.

In this case, however, there is no arbitrage condition ruling out unexploited profit
opportunities in the assets whose price rises constitute the bubble. Our baseline
case is therefore not a ‘rational’ bubble. We do not see this as a shortcoming
– to our minds, there is much evidence that the asset-price bubbles we see in
modern industrial economies are not rational in this sense (see, for example,
Shiller (2000)). Nevertheless, it is of interest to derive results for the case of a
rational bubble.

Such a bubble arises from the actions of a rational investor who buys the relevant
assets up to the point at which expected profits are driven to zero.13 If the
probability of collapse is constant, p∗, and the capital gain to the investor in
year t + 1 if the bubble collapses is −at , then a rational risk-neutral investor will
be indifferent to holding the asset when the expected growth of the bubble, if it
survives, is ∆at+1 = at p∗/(1− p∗). This is a geometrically growing bubble, rather
than the constant-growth bubble that constituted our baseline case.14

The arbitrage condition that defines this rational bubble implies that the bubble’s
expected growth over the next year, Eac

t ∆at+1, is zero. In this case, however,
the activist and the sceptic are making identical assumptions about the bubble’s
expected effect on next year’s output. It follows that the activist will always
recommend the same policy interest rate as the sceptic for a rational bubble,

13 We assume that the assets yield an annual return equal to the real interest rate, so that the
expected profit relative to holding 1-year government bonds is determined by the expected
capital gain on the assets.

14 Note that, if the probability of collapse is not constant, a rational bubble need not grow at a
constant geometrical rate.
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provided she believes that the stochastic properties of the bubble are not affected
by the actions of policy-makers, so that certainty equivalence holds.15

4. Discussion and Conclusions

Table 1 provides a summary of the results. For each set of assumptions, it shows,
as time proceeds and the bubble grows, whether the activist would recommend
tighter (+), looser (−) or the same (=) policy settings as the sceptic.

Table 1: Activist’s Policy Recommendations While the Bubble Survives
Tighter (+), looser (−), or the same as (=) the sceptic’s recommendation

Scenario Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Policy can’t affect bubble

pt = 0.2 + + + = − −
pt = 0.4 + − − − − −

Policy affects probability of bursting

p∗ = 0.2, δ = 0.1 + + + + + +

p∗ = 0.4, δ = 0.1 + + − − − −
p∗ = 0.4, δ = 0.2 + + + − − −
p∗ = 0.4, δ = 0.3 + + + + + −

Linear efficiency losses + + + − − −
Quadratic efficiency losses + + + + + +

Policy affects bubble growth + + − − − −
Bubble bursts over two periods + + + − − −
Rational bubble = = = = = =

15 This result relies on a number of implicit, simplifying assumptions about the economy. In
particular, it relies on the assumptions that the effect on the output gap of changes in asset
prices is proportional to the size of those changes, and that rational investors and the activist
policy-maker agree on the exact stochastic details of the bubble. Relaxing either of these
assumptions could generate different policy recommendations by the activist. For example,
for a geometrically growing bubble, it could account for an activist policy-maker assessing the
bubble’s growth rate to be faster (slower) than ‘rational’ – say, ∆at+1 = χat p∗/(1− p∗), with
χ > 1 (χ < 1) – in which case the activist’s policy recommendations would always be tighter
(looser) than the sceptic’s, for as long as the bubble survived.
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There are several broad lessons worth highlighting from this summary. When the
asset-price bubble is small enough, the activist policy-maker always (except in
the case of the rational bubble) recommends tighter policy than the sceptic who
ignores the future possible paths of the bubble. However, this result is of limited
practical relevance. Although we have assumed that activist policy-makers learn
about the nature of the bubble at its inception, in reality there is likely to be much
doubt in the early stages about whether rising asset prices constitute a bubble.
Asset-price bubbles rarely arise out of thin air – instead, they usually occur when
the evolving economic fundamentals are consistent with some rise in asset prices.
While there will always be some doubt about whether rising asset prices constitute
a bubble, these doubts would seem particularly acute when the suspected deviation
of asset prices from fundamentals remains small and has been short-lived. For
these reasons, there would seem to be no strong case for central banks to respond
to small asset-price misalignments.16

As the bubble grows, however, there are two developments with potentially
conflicting implications for appropriate activist policy. On the one hand, an
activist policy-maker should become increasingly confident that the observed
asset-price rises do constitute a bubble, which should strengthen the case for
responding actively to them. On the other hand, as the bubble grows, the potential
negative effects from its eventual bursting will increase. Whether this constitutes
an argument for tighter or looser policy will depend on the nature of the bubble.

The case for tightening is to offset the expansionary effects of future expected
growth of the bubble and, in some formulations, to reduce the bubble’s growth
or help to burst it. As we have seen, there are circumstances in which this case
is particularly compelling, in particular when: the probability that the bubble will
burst of its own accord over the next year is assessed to be small; the bubble’s
probability of bursting is quite interest sensitive; efficiency losses associated
with the bubble rise strongly with the bubble’s size; or, the bubble’s demise is

16 Cecchetti et al (2003) also make this point when they say ‘our proposal [to raise interest rates
modestly as asset prices rise above what are estimated to be warranted levels] does not call for
central banks to respond to small misalignments. We agree that these are difficult to detect and
are unlikely to have very strong destabilizing effects in any case’ (p 440).
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expected to occur gradually over an extended period, rather than in a sudden bust.
Conversely, the case for loosening is strongest when these conditions are reversed,
since in those circumstances it becomes increasingly important to allow for the
contractionary impact that arises when the bubble bursts.17 The stochastic process
driving the bubble is thus crucial to determining which of these considerations
predominates.18

Ultimately, the appropriate policy strategy is a matter for judgement. Since the
optimal policy response at any point depends on the stochastic properties of the
bubble, our results highlight the information requirements inherent in an activist
approach. Where sufficient information about the bubble process is not available
to the policy-maker, a robust approach, something along the lines of the one used
by our sceptic, may be the best that can be achieved. Given sufficient information
about the bubble process, an activist approach may be feasible, but our results
suggest that the appropriate response to bubbles is not uniform. In particular, it
may be optimal to ‘lean against’ some bubbles but not others, and hence the
formulation of an activist strategy requires judgments to be made about the process
driving the bubble and its likely sensitivity to monetary policy.

17 In a passage immediately following the one quoted in the previous footnote,
Cecchetti et al (2003) say ‘... there are clearly times when egregious misalignments
exist. Recent examples include Japanese stock and land prices in 1989, and the NASDAQ
in late 1999 and early 2000. While some portion of these high price levels may have been
justifiable based on fundamentals, few people would deny that a significant component was due
to asset market disturbances. Ultimately, in terms of reducing inflation and output volatility, it
is important that central bankers respond to these large relatively “obvious” misalignments’
(p 440, italics added). When misalignments are large and relatively obvious, however, our
results suggest that it may be unclear whether the appropriate policy response should be to
raise interest rates modestly or to lower them, unless the policy-maker is able to make use of
specific knowledge about the stochastic process driving the bubble.

18 It is also possible that the probability of the bubble bursting of its own accord over the next year
might rise as the bubble gets larger. If so, the case for looser, rather than tighter, policy by the
activist is further strengthened, a point also made by Kent and Lowe (1997). For most of our
simulations, we have assumed p∗ = 0.4, implying an average remaining life for the bubble of
two and a half years, which may be a more plausible assumption for intermediate and larger
bubbles than p∗ = 0.2, which implies an average remaining life of five years.
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Appendix A: Policy Settings for a Bubble that Bursts in the
Fifth Year

We assume a constant probability pt = 0.2 that the bubble bursts in each year.
In contrast to the simulations reported in the text, we allow both the sceptic and
the activist to implement policy through time – so that the state of the economy
depends on the identity of the policy-maker. Figure A1 shows results assuming
that, as events turn out, the bubble grows for four years, during which time it has
a direct expansionary effect on output of γ = 1 per cent in each year, and then
bursts in the fifth year, with a direct contractionary effect on output of 4 per cent
in that year.19 The top panel shows the real interest rate profiles, rt , set by the two
policy-makers; the middle and bottom panels show the outcomes for the output
gap, yt , and the inflation rate, πt .

While the bubble is growing, the paths for output and inflation generated by the
sceptic’s policy settings reflect the continued expansionary effects of the bubble.
The activist responds more aggressively to these expansionary effects because she
anticipates them, but nevertheless she does not offset them completely because
of the possibility that the bubble may be about to burst. Therefore, even with the
activist’s optimal policy settings, output and inflation remain above target while
the bubble survives.

The bursting of the bubble in year 5 generates a severe recession. Output falls by
more than the direct contractionary effect of the bubble bursting, because policy in
the previous year has been tighter than neutral to offset the bubble’s expansionary
effects. In response to the bubble’s collapse, policy is eased aggressively. Despite
using the same policy rule after the bubble bursts, the modified Taylor rule,
Equation (7), the paths for the policy interest rate, output, and inflation are
somewhat different for the two policy-makers because they have set different
policy interest rates in earlier years.

19 A bubble with a probability of bursting each year of pt = 0.2 bursts on average in the fifth year.
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Figure A1: Results for Bubble that Happens to Burst in the Fifth Year
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Appendix B: Comparison with Kent and Lowe (1997)

Kent and Lowe (1997) present a simple model of an asset-price bubble that has
similarities with ours. They derive optimal activist policy in their model for two
of the cases we have examined: when the probability of the bubble collapsing
is exogenous, and when this probability rises with the previous period’s policy
interest rate.20

Kent and Lowe show that, when policy cannot affect the bubble’s probability
of collapse, optimal activist policy generates average inflation in their
period 2 equal to the central bank’s target rate of inflation. When policy can affect
the bubble’s probability of collapse, however, optimal activist policy generates
average inflation in period 2 less than the central bank’s target rate of inflation
(where the averages are calculated over all possible outcomes for the bubble).

The qualitative nature of these results carries over to our model set-up. When
policy cannot affect the bubble, average inflation in every year of our model is
also equal to the central bank’s target. When policy can affect the bubble, however,
either by affecting its probability of bursting or its rate of growth, average inflation
from year 2 onward is always less than the central bank’s target when activist
policy is implemented.21

Kent and Lowe use their model to make the case that, when policy can affect the
bubble’s probability of collapse, it may make sense for the policy-maker to raise
interest rates early in the life of the bubble, even though this will increase the
likelihood of inflation being below target in the near term. As we have seen, this

20 Theirs is a 3-period model in which the bubble, which has formed in period 1, can either grow
or collapse back to zero in period 2, and if it has grown, can grow further or collapse in period
3. Their periods should, therefore, probably be thought of as spanning more than one year.

21 Recall that it takes two years for policy changes to affect inflation in our model. As for the Kent
and Lowe model, in each year the averages must be calculated over all possible outcomes for
the bubble, weighted by their appropriate probabilities. Calculated in this way, the averages are
therefore equivalent to period-0 expectations.
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general case – for tightening policy early in the life of the bubble – survives in our
model. What our model adds to this story is that ‘early in the life of the bubble’
may not last very long. For many of our simulations, within a couple of years or
so of the bubble’s inception, it is no longer clear whether optimal activist policy
should be tighter or looser than the policy chosen by a sceptic.
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Appendix C: Analytic Solution of the Optimal Policy Problem

In Section 3 we compared the recommendations of activist and sceptical policy-
makers, when confronting various types of asset-price bubbles. For asset-price
bubbles which are not influenced by policy, it is possible to derive an analytic
formula for the difference between the recommendations of these two types of
policy-makers. In this Appendix we outline this derivation in detail. The working
is somewhat complicated owing to the contingent nature of the optimal policy
problem facing an activist policy-maker in this setting.

The derivation proceeds in several stages. We first describe, in Section C.1, the
contingent optimal policy problem facing an activist policy-maker, confronted
by an asset-price bubble whose stochastic properties she cannot affect. Before
attempting to treat this contingent problem, however, we then derive, in
Section C.2, the analytic solution to the optimal policy problem facing an activist
policy-maker in our Ball-style economy, when confronting a known set of future
exogenous shocks to output.

Next, in Section C.3, we discuss how the optimal policy problem set out and solved
in Section C.2 needs to be modified to handle the case of an exogenous asset-
price bubble of the form treated in the main body of the paper – where an activist
faces, not a known set of future exogenous shocks to output, but rather an array of
possible different sets of future shocks, depending upon how the bubble develops
in subsequent periods. This more general contingent optimal policy problem is
then solved explicitly, in matrix terms, in Section C.4.

Finally, we then use this general solution to study the difference between the
contingent optimal policy recommendations of activist and sceptical policy-
makers confronting an asset-price bubble. As in Section 3, we assume throughout
that policy is ultimately set in each period by the sceptic.22

22 Note, however, that for the working which follows it does not in fact matter upon what basis
policy is eventually set in each period. All that matters is that both activist and sceptical policy-
makers face an economy in the same state in each year, when devising their recommendations
on the optimal stance of monetary policy.
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C.1 Nature of the Problem for an Activist Policy-maker

Consider an activist policy-maker, in the economy described by Equations (4) and
(5) of Section 2, facing an asset-price bubble developing according to Equation (3),
and seeking to minimise the loss function given by Equation (6). As in Section 3,
we assume that the bubble will burst with certainty in year 14, if it has not already
done so. We also assume it to be unaffected by the actions of policy-makers.23

For each period s = 0,1, . . . ,13 we wish to derive the analytic solution to the
policy-maker’s problem of determining the optimal current policy response to
this situation. Note that, since the bubble will definitely have burst by period 14
(and is assumed not to re-form thereafter), we already know what an activist will
recommend for policy in periods s = 14,15, . . . , namely that policy simply be
given by Equation (7).

In formulating the optimal policy problem facing an activist policy-maker in
each period s = 0,1, . . . ,13, it is crucial to appreciate that we seek here the
contingent policy recommendation which such a policy-maker would make. In
other words, we seek the recommendation they would make on the understanding
that, whenever the bubble does ultimately burst, policy may be switched from
then on to a profile better suited to an economy no longer experiencing an asset-
price bubble.24 Specifically, for each period s = 0,1, . . . ,13, we therefore seek the
optimal (14− s)-component vector, Rac

s , of contingent policy recommendations
which an activist would, in period s, wish to see enacted in periods {s,s +
1, . . . ,13} unless the bubble bursts, say in period s + k, in which case policy, for
periods {s + k,s + k + 1, . . . ,13}, would then switch to being set by Equation (7).
The activist’s actual policy recommendation for period s, rac

s , is then just the first
component of this vector Rac

s .

23 This assumption applies throughout this Appendix. Analytical treatment of bubbles whose
development is affected by the actions of policy-makers turns out to be far more difficult than
that of bubbles which are unaffected by policy. Moreover, for bubbles which are influenced by
policy, analytical treatment does not yield a simple, closed formula for the difference between
the policy recommendations of activist and sceptical policy-makers. This contrasts with the
results obtained in this Appendix for bubbles which are uninfluenced by policy.

24 See Footnote 6 regarding the contingent nature of the policy problem facing an activist policy-
maker in the current setting.
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C.2 A Convenient Matrix Form for the Solution of the Ball Model

We begin by writing the Ball model in a slightly more general form than that used
in the main body of the paper, viz:

yt = −β rt−1 +λyt−1 +ut
πt = πt−1 +αyt−1 .

(C1)

Here we have included a term for a general exogenous shock in period t, ut , in
the output gap equation. Writing this equation in this way helps to simplify the
subsequent discussion – even though we ultimately wish to focus on the case
where the shocks {ut} arise from a bubble via ut ≡ ∆at , as in Equation (4).

Now consider any fixed period s ∈ {0,1, . . . ,13}. To determine an activist policy-
maker’s policy recommendation for period s, rac

s , we need first to establish a
suitable matrix form for the solution of the Ball model, Equation (C1), over
the horizon {s + 1,s + 2, . . . ,14}, in the event that: the economy is expected
to be struck by some given set of exogenous shocks {us+1, . . . ,u14}; and that
policy in periods {s,s + 1, . . . ,13} is to be set according to some given path
{rs,rs+1, . . . ,r13}. By solution of the Ball model we mean here determination of
the profiles for output and inflation over the horizon {s+1,s+2, . . . ,14}.

To this end, set Ns ≡ 14−s. Then, for any t ≤ s, let Yt , Πt , Rt and Xt denote the Ns×
1 vectors Yt = (yt+1, . . . ,yt+Ns

)T , Πt = (πt+1, . . . ,πt+Ns
)T , Rt = (rt , . . . ,rt+Ns−1)

T

and Xt = (ut+1, . . . ,ut+Ns
)T . Also, let A denote the 2Ns×2Ns matrix, and Zt and ξt

the 2Ns ×1 vectors, given by

A ≡
(

λ INs
0

αINs
INs

)
, Zt ≡

(
Yt
Πt

)
, ξt ≡

(
Xt −βRt

0

)
(C2)

where INs
denotes the Ns ×Ns identity matrix. Finally, let H denote the 2Ns ×Ns

matrix given by H = (INs
0)T , so that ξt = H(Xt −βRt).

Then, for any t ≤ s we have that Ball’s model for the Ns-period horizon {t +
1, . . . , t + Ns} may be written compactly in matrix form as the relationship Zt =
AZt−1 +ξt . By simple iteration (and writing A0 for I2Ns

) it then follows that

Zs = ANsZs−Ns
+

Ns−1∑
j=0

A jξs− j . (C3)
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This represents an expression for Zs in terms of:

• future exogenous shocks {ut}14
t=s+1, and current and future policy settings

{rt}13
t=s, which enter through the vectors {ξt}s

t=s−Ns+1; together with

• initial conditions for the endogenous variables yt and πt , as captured by the
vector Zs−Ns

.

Moreover, using that ξt = H(Xt −βRt), it follows immediately that we may write

Zs =


ANsZs−Ns

+
Ns−1∑
j=0

A jHXs− j


−β

Ns−1∑
j=0

A jHRs− j . (C4)

To proceed further, now introduce the ‘backward’ and ‘forward’ shift operators, B
and F , given in matrix form by the Ns ×Ns matrices

B ≡




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
... ...
0 0 · · · 1 0


 , F ≡




0 1 0 · · · 0
0 0 1 · · · 0
... ...
0 0 0 · · · 1
0 0 0 · · · 0


 . (C5)

Then observe that, for any j = 0, . . . ,Ns −1, we may write

Xs− j = B jXs +FNs− jXs−Ns
, Rs− j = B jRs +FNs− jRs−Ns

. (C6)

Hence we may rewrite Equation (C4) in the form

Zs =
{

ANsZs−Ns
+

∑Ns−1
j=0 A jHFNs− jXs−Ns

−β
∑Ns−1

j=0 A jHFNs− jRs−Ns

}
+

{∑Ns−1
j=0 A jHB jXs

}
−

{
β

∑Ns−1
j=0 A jHB jRs

} (C7)

where the first bracket of terms here represents purely ‘historical’ effects (that is,
the influence of initial conditions); the second captures the impact of expected
exogenous shocks over the horizon under consideration; and the third reflects the
influence of monetary policy settings over this same horizon.

For any given initial conditions, given set of policy decisions {rs, . . . ,r13}, and
given set of exogenous shocks {us+1, . . . ,u14}, Equation (C7) represents the
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general solution to the Ball model, over the horizon {s + 1, . . . ,14}, expressed
in suitable matrix form. Moreover, if we now introduce the notation

Js ≡ ANsZs−Ns
+

Ns−1∑
j=0

A jHFNs− jXs−Ns
−β

Ns−1∑
j=0

A jHFNs− jRs−Ns
(C8)

and then set

K ≡
Ns−1∑
j=0

A jHB j , Gs = Js +KXs (C9)

then we may write Equation (C7) more compactly as the formula

Zs = PRs +Gs (C10)

where P is the 2Ns ×Ns matrix defined by P ≡−βK.

C.3 Mathematical Formulation of the Problem Facing an Activist Policy-
maker in Period s

We now wish to formulate precisely the optimal policy problem facing an activist
policy-maker in period s, trying to determine the optimal policy vector, Rac

s , of
contingent policy settings to recommend for periods {s,s+1, . . . ,13}. To do this,
it is necessary first to introduce yet some further notation.

First, let {X (k)
s }Ns

k=1 denote the Ns different possible Ns × 1 vectors of exogenous
shocks which an activist policy-maker might expect to hit the economy in periods
{s + 1,s + 2, . . . ,14}, depending (respectively) on whether the bubble bursts in
period s + 1, period s + 2, . . . , or period 14. Also, let {p(k)

s }Ns
k=1 denote the

associated probabilities with which each of these possible shock profiles is
expected to occur, as at period s.25 Note that, in view of Equation (3) of the

25 Note that these probabilities are not the same as the probabilities, {pt}, referred to in the main
body of the paper. Recall that, for each t, pt+1 denotes the conditional probability that the bubble
will burst in period t +1, given that it has not done so by period t. For any period s, the two sets
of probabilities are thus clearly related by the formulae: p(1)

s = ps+1; p(2)
s = (1− ps+1)ps+2;

p(3)
s = (1− ps+1)(1− ps+2)ps+3; and so on.
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main paper for the way an asset-price bubble evolves, the vectors X (k)
s are given

explicitly, for each k = 1, . . . ,Ns, by the formula

X (k)
s ( j) =




γs+ j , 1 ≤ j < k

−∑s+k−1
i=1 γi , j = k

0 , k < j ≤ Ns .

(C11)

Next, for any given choice of vector of contingent policy recommendations by
the activist policy-maker, Rac

s , let {R(k)
s }Ns

k=1 denote the corresponding set of
policy paths which would actually be followed by the activist over the horizon
{s,s+1, . . . ,13}, depending upon when the bubble actually bursts. Thus, for each
k, R(k)

s is an Ns ×1 vector whose first k entries would be the same as those of Rac
s ,

but whose remaining entries would then be as determined by Equation (7) (see
also Equation (D2) of Appendix D).

Finally, let {Z(k)
s }Ns

k=1 denote the corresponding 2Ns × 1 vectors of outcomes for
output and inflation over the horizon {s + 1, . . . ,14} which would occur in the
event that the bubble bursts (respectively) in period s + 1, period s + 2, . . . , or
period 14. Thus, Z(k)

s denotes the vector of outcomes for output and inflation which
would occur in the event that X (k)

s describes the exogenous shocks striking the
economy over this horizon, and that policy is given by the vector R(k)

s . Note that,
by Equation (C10), we will then have simply, for each k:

Z(k)
s = PR(k)

s +G(k)
s where G(k)

s = Js +KX (k)
s . (C12)

Armed with this notation, we can now formulate precisely the optimal policy
problem facing an activist policy-maker in period s. For now, invoking also
Result 1 of Appendix D, it is clear that, for any given choice of contingent policy
recommendations Rac

s over the horizon {s,s + 1, . . . ,13}, the corresponding loss
expected by an activist policy-maker would be

L =
∞∑

τ=s+1

[
Es(y

2
τ)+ µEs(π

2
τ )

]
=

Ns∑
k=1

p(k)
s L(k)

s (C13)

where
L(k)

s = Z(k)
s

T
Ω(k)

s Z(k)
s (C14)
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and where the 2Ns ×2Ns matrices {Ω(k)
s }Ns

k=1 are given by

(
Ω(k)

s

)
i j

=




1 , 1 ≤ i = j < k

1+ζ α2 , i = k, j = k
ζ α , i = k, j = k +Ns
µ , 1+Ns ≤ i = j < k +Ns
ζ α , i = k +Ns, j = k
µ +ζ , i = k +Ns, j = k +Ns
0 , otherwise .

(C15)

Here, ζ = (µ + q2)/(1− (1−αq)2) is a scalar which arises from the working
in Appendix D, expressed in terms of another scalar, q =

(−µα + (µ2α2 +
4µ)1/2)/2.

Therefore, finally, in any period s = 0,1, . . . ,13, the activist policy-maker’s task
of finding the optimal contingent set of policy settings to recommend over the
horizon {s,s + 1, . . . ,13} may be expressed succinctly as: find the policy vector
Rac

s which minimises

L =
Ns∑

k=1

p(k)
s L(k)

s (C16)

where each L(k)
s is as given by Equation (C14), subject to the condition that

Z(k)
s = PR(k)

s +G(k)
s (C17)

for each k (where the quantities P, R(k)
s and G(k)

s are as defined earlier).

C.4 Solution of the Problem Facing an Activist Policy-maker

To solve the optimal policy problem just posed, observe first that, for each
k = 1, . . . ,Ns, by putting Equation (C17) into Equation (C14) and expanding we
may write

L(k)
s =

(
PR(k)

s +G(k)
s

)T
Ω(k)

s

(
PR(k)

s +G(k)
s

)
= R(k)

s
T

PT Ω(k)
s PR(k)

s +2R(k)
s

T
PT Ω(k)

s G(k)
s +G(k)

s
T

Ω(k)
s G(k)

s . (C18)
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To simplify this expression we next exploit the fact that, for each k, the vectors
R(k)

s and Rac
s have the same first k components. One implication of this is that, for

each k, we have the identity

Ω(k)
s PR(k)

s = Ω(k)
s PRac

s . (C19)

Hence, noting also that Ω(k)
s is a symmetric matrix, we may rewrite Equation (C18)

as
L(k)

s = Rac
s

T PT Ω(k)
s PRac

s +2Rac
s

T PT Ω(k)
s G(k)

s +G(k)
s

T
Ω(k)

s G(k)
s (C20)

for each k = 1, . . . ,Ns. Then, in view of Equation (C16), it follows that

L = Rac
s

T PT


 Ns∑

k=1

p(k)
s Ω(k)

s


PRac

s +

(C21)

2Rac
s

T PT


 Ns∑

k=1

p(k)
s Ω(k)

s G(k)
s


+

Ns∑
k=1

p(k)
s G(k)

s
T

Ω(k)
s G(k)

s

and the activist policy-maker’s task is to choose Rac
s so as to minimise this quantity.

Yet the solution to this optimisation problem is well-known to be given by

Rac
s = −


PT


 Ns∑

k=1

p(k)
s Ω(k)

s


P




−1

PT


 Ns∑

k=1

p(k)
s Ω(k)

s G(k)
s


 . (C22)

Finally, this expression may be simplified slightly if we introduce the notation

Ωs =
Ns∑

k=1

p(k)
s Ω(k)

s , χs =
Ns∑

k=1

p(k)
s Ω(k)

s PX (k)
s . (C23)

Then, using the definitions of P and G(k)
s , it follows from Equation (C22) that

Rac
s = −

(
PT ΩsP

)−1
PT ΩsJs +β−1

(
PT ΩsP

)−1
PT χs (C24)

which expresses Rac
s as a function of the matrices P and Ωs, the vectors Js and χs,

and the parameter β .
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Note that, importantly, the vector Js in Equation (C24) is a function purely of
the vectors Zs−Ns

, Xs−Ns
and Rs−Ns

. Hence, the solution vector, Rac
s , given by

Equation (C24) may be viewed as consisting of two parts: a part reflecting the
past set of economic outcomes, policy actions and exogenous shocks which have
occurred up to period s, captured in the first term on the right hand side of
Equation (C24); and a part reflecting the future exogenous shocks which the
policy-maker expects to buffet the economy over the policy horizon {s + 1,s +
2, . . . ,14}, as captured by the second right hand side term of Equation (C24).

C.5 The Difference between the Recommendations of Activists and Sceptics

Fortunately, we are really only concerned with the first component of the vector
Rac

s , since this is the policy recommendation which the activist must actually make
for the current quarter. Denote this first component by rac

s , and write rsc
s for the

corresponding policy recommendation of a sceptic for the current quarter. Then it
turns out that, using a matrix algebra result set out in Appendix D, we can derive
from Equation (C24) a simple analytical expression for the quantity (rac

s −rsc
s ), the

difference between the recommendations in each quarter of activist and sceptical
policy-makers.

In more detail, one way to think about a sceptic is as an activist who thinks that
all the vectors X (k)

s are zero, and so expects no future exogenous shocks to output.
It follows that the policy recommendation of a sceptic, in each period, is also
given by the first component of a vector of the form given by Equation (C24) –
except with the quantity ‘χs’ treated as being zero, so that the second term in this
formula vanishes. Hence, rsc

s is given, in each period s, by the first component of
the vector

(
PT ΩsP

)−1
PT ΩsJs, where the vector Js is the same as for an activist

policy-maker.26

26 Here we are using that our activist and sceptical policy-makers face an economy in the same
state in each period s, which ensures that the vector Js is the same for both types of policy-
makers.
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This, however, then means that the difference between the policy
recommendations of an activist and a sceptic in each period s will be given
simply by the first component of the vector

β−1
(

PT ΩsP
)−1

PT χs . (C25)

Finally, this then turns out to yield a simple formula for this difference between
the policy recommendations of activist and sceptical policy-makers, in view of
Result 2 in Appendix D. We obtain that this difference is independent of the model
parameters α and λ , and of the loss function parameter µ . Explicitly it depends,
in each period s, only upon the bubble’s expected growth next period if it survives,
γs+1, its current size as ≡

∑s
j=1 γ j, and the probability, ps+1 ≡ p(1)

s , that it will
burst in period s+1, given that it has not done so by period s:

rac
s − rsc

s = β−1
{

(1− ps+1)γs+1 − ps+1as

}
(C26)

which is precisely the formula noted in Footnote 6 in Section 3.
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Appendix D: Some Technical Results Required in Appendix C

In this Appendix we set out a number of technical results which we called upon
but did not justify in Appendix C, so as not to interrupt the flow of the discussion.

D.1 How the Infinite Loss Horizon is Handled in Appendix C

Recall that the loss function used in the main body of the paper is

L =
∞∑

τ=s+1

[
Es(y

2
τ)+ µEs(π

2
τ )

]
. (D1)

In each period s, this combines contributions from each period of the infinite
horizon {s + 1,s + 2, . . .}. In Appendix C, however, this loss is computed using
finite dimensional matrix algebra involving the matrices {Ω(k)

s }Ns
k=1.

To understand how this is done, the key observation is that, once a bubble has
burst, no further shocks are expected to hit the economy. Then, if the bubble
bursts in period s + k, it is well known (see (Ball 1999)) that, to minimise
L, the optimal setting for policy, in period s + k and all subsequent periods
{s+ k +1,s+ k +2, . . .}, is given recursively by

rs+ j = β−1(λ +αq)ys+ j +β−1qπs+ j (D2)

where the scalar q is defined by q =
(−µα + (µ2α2 + 4µ)1/2)/2. Note that

Equation (7) is just a special case of this general formula, for the case λ = 0.8,
α = 0.4, β = 1 and µ = 1.

Using this, it turns out that, for the case of a bubble which bursts in period s+k, it
is possible to express the total contribution to the loss function L, from all periods
t > s + k, purely in terms of the values of y and π in period s + k. The precise
result, the proof of which is available from the authors upon request, is as follows.

Result 1. Consider an activist policy-maker in period s, facing an asset-price
bubble which is expected to burst in period s+k, after which no further exogenous
shocks are expected to strike the economy. Then the quantity

L∗ =
∞∑

τ=s+k+1

[
Es(y

2
τ)+ µEs(π

2
τ )

]
(D3)
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satisfies that

L∗ ≥ µ +q2

1− (1−αq)2 (αys+k +πs+k)
2 (D4)

with equality if and only if policy, in all periods t ≥ s + k, is set according to the
recursive rule given by Equation (D2).

It is now easy to see how the use of the infinite horizon loss function,
Equation (D1), is accommodated within the theoretical framework of finite
dimensional matrix algebra used in Appendix C. For consider an activist policy-
maker in period s facing an asset-price bubble which has not yet burst. As in
Appendix C, let L(k)

s denote the contingent loss such a policy-maker would expect
were the bubble expected to burst in period s + k. Then, in view of Result 1, we
clearly have that in this setting, and with policy for t ≥ s + k set according to
Equation (D2),

L(k)
s =

∞∑
τ=s+1

[
Es(y

2
τ)+ µEs(π

2
τ )

]

=
µ +q2

1− (1−αq)2 (αys+k +πs+k)
2 +

s+k∑
τ=s+1

[
Es(y

2
τ)+ µEs(π

2
τ )

]

= Z(k)
s

T
Ω(k)

s Z(k)
s (D5)

where Z(k)
s and Ω(k)

s are as defined in Section C.3 of Appendix C; and this
completes the justification of Equations (C13) and (C14).

D.2 A Matrix Algebra Result

In Section C.5 of Appendix C we also invoked the following linear algebra result.

Result 2. For any period s let the matrices P and Ωs, and the vector χs, be as
defined in Appendix C. Next, let V denote the Ns ×1 vector

V =
(

PT ΩsP
)−1

PT χs . (D6)

Then there is a simple formula for V (1), the first component of this vector V , in
terms of: the bubble’s expected growth next period if it survives, γs+1; its current
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size as ≡
∑s

j=1 γ j; and the probability, ps+1 ≡ p(1)
s , that it will burst in period

s+1, given that it has not done so by period s. This formula is

V (1) = (1− ps+1)γs+1 − ps+1as . (D7)

Proof: The proof of this result is quite lengthy and technical. It is available from
the authors upon request. The basic idea, however, is first to establish that we may
re-write the vector V in the form

V = X (Ns)
s −β

Ns−1∑
k=1

σkW
(k)
s (D8)

where X (Ns)
s is as given by Equation (C11), and where, for each k = 1, . . . ,Ns −

1: σk denotes the quantity σk ≡ ∑s+k
j=1 γ j; ek denotes the Ns × 1 vector

(0, . . . ,0,1,0, . . . ,0)T , the ‘1’ appearing in the kth entry; and W (k)
s denotes the

vector

W (k)
s ≡ β−1p(k)

s

(
PT ΩsP

)−1
PT Ω(k)

s Pek . (D9)

It then follows directly from Equation (D8) that, to obtain Equation (D7), it will
suffice to prove the general formula that, for any k = 1, . . . ,Ns −1:

W (k)
s (1) =

{
β−1p(1)

s , k = 1
0 , otherwise .

(D10)

Finally, this latter result may be established by: first re-casting the vector quantities
W (k)

s as arising from a loss minimisation problem, analogous to the way that the
vector V did in Appendix C; and then making a judicious ‘change of variables’
with respect to which to carry out the loss minimisation – a change of variables
prompted by the structure of the Ball model.27 QED

27 Specifically, recall that in the Ball model changes in interest rates flow through to inflation
(via output) with a lag of two periods. Hence, the following two options are readily seen to be
equivalent: on the one hand, determining an optimum profile for interest rates, rt , in periods
t = s,s+1, . . . ,13, so as to minimise a given loss function; and on the other, seeking instead an
optimum profile for inflation, πt , in periods t = s +2,s +3, . . . ,15, so as to minimise this loss,
and then recursively back-solving for the corresponding implied profile for {rt}13

t=s. It is this
latter approach which we employ.
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