Skip to content
RDP 2004-11: Trade Openness: An Australian Perspective
Equation (1)
log
(
t
r
a
d
e
i
j
)
=
β
0
+
β
1
log
(
G
D
P
i
.
G
D
P
j
)
+
β
2
log
(
distance
i
j
)
+
β
3
log
(
G
D
P
i
P
O
P
i
.
G
D
P
j
P
O
P
j
)
+
β
4
log
(
a
r
e
a
i
.
a
r
e
a
j
)
+
β
5
(
i
s
l
a
n
d
b
o
t
h
i
j
)
+
β
6
(
i
s
l
a
n
d
e
i
t
h
e
r
i
j
)
+
β
7
(
l
a
n
d
l
o
c
k
e
d
b
o
t
h
i
j
)
+
β
8
(
l
a
n
d
l
o
c
k
e
d
e
i
t
h
e
r
i
j
)
+
β
9
(
b
o
r
d
e
r
i
j
)
+
β
10
(
c
o
m
m
o
n
c
o
l
o
n
i
s
e
r
i
j
)
+
β
11
(
c
o
l
o
n
y
i
j
)
+
β
12
(
c
o
m
m
o
n
l
a
n
g
u
a
g
e
i
j
)
+
β
13
(
F
T
A
)
+
β
14
(
c
o
m
m
o
n
c
u
r
r
e
n
c
y
i
j
)
+
ε
i
j
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaciGGSbGaai4BaiaacEgadaqadaqaaiaadshacaWGYbGaamyyaiaadsgacaWGLbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9iabek7aInaaBaaaleaacaaIWaaabeaakiabgUcaRiabek7aInaaBaaaleaacaaIXaaabeaakiGacYgacaGGVbGaai4zamaabmaabaGaam4raiaadseacaWGqbWaaSbaaSqaaiaadMgaaeqaaOGaaiOlaiaadEeacaWGebGaamiuamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRiabek7aInaaBaaaleaacaaIYaaabeaakiGacYgacaGGVbGaai4zamaabmaabaGaaeizaiaabMgacaqGZbGaaeiDaiaabggacaqGUbGaae4yaiaabwgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaiodaaeqaaOGaciiBaiaac+gacaGGNbGaaiikamaalaaabaGaam4raiaadseacaWGqbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamiuaiaad+eacaWGqbWaaSbaaSqaaiaadMgaaeqaaaaakiaac6cadaWcaaqaaiaadEeacaWGebGaamiuamaaBaaaleaacaWGQbaabeaaaOqaaiaadcfacaWGpbGaamiuamaaBaaaleaacaWGQbaabeaaaaGccaGGPaaabaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaisdaaeqaaOGaciiBaiaac+gacaGGNbWaaeWaaeaacaWGHbGaamOCaiaadwgacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiOlaiaadggacaWGYbGaamyzaiaadggadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkcqaHYoGydaWgaaWcbaGaaGynaaqabaGcdaqadaqaaiaadMgacaWGZbGaamiBaiaadggacaWGUbGaamizaiaaykW7caWGIbGaam4BaiaadshacaWGObWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRiabek7aInaaBaaaleaacaaI2aaabeaakmaabmaabaGaamyAaiaadohacaWGSbGaamyyaiaad6gacaWGKbGaaGPaVlaadwgacaWGPbGaamiDaiaadIgacaWGLbGaamOCamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkcqaHYoGydaWgaaWcbaGaaG4naaqabaGcdaqadaqaaiaadYgacaWGHbGaamOBaiaadsgacaWGSbGaam4BaiaadogacaWGRbGaamyzaiaadsgacaaMc8UaamOyaiaad+gacaWG0bGaamiAamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaeaacqGHRaWkcqaHYoGydaWgaaWcbaGaaGioaaqabaGcdaqadaqaaiaadYgacaWGHbGaamOBaiaadsgacaWGSbGaam4BaiaadogacaWGRbGaamyzaiaadsgacaaMc8UaamyzaiaadMgacaWG0bGaamiAaiaadwgacaWGYbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRiabek7aInaaBaaaleaacaaI5aaabeaakmaabmaabaGaamOyaiaad+gacaWGYbGaamizaiaadwgacaWGYbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRiabek7aInaaBaaaleaacaaIXaGaaGimaaqabaGcdaqadaqaaiaadogacaWGVbGaamyBaiaad2gacaWGVbGaamOBaiaaykW7caWGJbGaam4BaiaadYgacaWGVbGaamOBaiaadMgacaWGZbGaamyzaiaadkhadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaeqOSdi2aaSbaaSqaaiaaigdacaaIXaaabeaakmaabmaabaGaam4yaiaad+gacaWGSbGaam4Baiaad6gacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqaaiabgUcaRiabek7aInaaBaaaleaacaaIXaGaaGOmaaqabaGcdaqadaqaaiaadogacaWGVbGaamyBaiaad2gacaWGVbGaamOBaiaaykW7caWGSbGaamyyaiaad6gacaWGNbGaamyDaiaadggacaWGNbGaamyzamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkcqaHYoGydaWgaaWcbaGaaGymaiaaiodaaeqaaOWaaeWaaeaacaWGgbGaamivaiaadgeaaiaawIcacaGLPaaacqGHRaWkcqaHYoGydaWgaaWcbaGaaGymaiaaisdaaeqaaOWaaeWaaeaacaWGJbGaam4Baiaad2gacaWGTbGaam4Baiaad6gacaaMc8Uaam4yaiaadwhacaWGYbGaamOCaiaadwgacaWGUbGaam4yaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaaaaaa@4CD6@