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Abstract

This paper estimates a small structural model of the Australian economy,
designed principally for forecasting the key macroeconomic variables of output
growth, underlying inflation and the cash rate. In contrast to models with purely
statistical foundations, which are often used for forecasting, the Bayesian Vector
Autoregressive Dynamic Stochastic General Equilibrium (BVAR-DSGE) model
uses the theoretical information of a DSGE model to offset in-sample over-
fitting. We follow the method of Del Negro and Schorfheide (2004) and use a
variant of the small open economy DSGE model of Lubik and Schorfheide (2007)
to provide prior information for the VAR. The forecasting performance of the
model is competitive with benchmark models such as a Minnesota VAR and an
independently estimated DSGE model.

JEL Classification Numbers: C11, C53, E37
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A SMALL BVAR-DSGE MODEL FOR FORECASTING THE
AUSTRALIAN ECONOMY

Andrew Hodge, Tim Robinson and Robyn Stuart

1. Introduction

Forecasting is hard. Forecasting is also a key aspect of central banking.
Consequently, central banks devote considerable resources to forecasting and
understanding the current state of the economy, of which econometric models
are one component. Models can be used for a variety of purposes – for example,
scenario analysis and forecasting – and these different roles may require different
models. The purpose of this paper is to estimate a model for Australia specifically
designed for forecasting key macroeconomic variables, namely a structural
Bayesian Vector Autoregression (BVAR), with priors from a Dynamic Stochastic
General Equilibrium (DSGE) model.

DSGE models are structural models, often with explicit microeconomic
foundations, an example of which, for Australia, is Jääskelä and
Nimark (forthcoming).1 Consequently, these models have a strong emphasis on
theory, which places many restrictions on the parameters, possibly at the expense
of fitting the data. Alternatively, VARs are far less restrictive and therefore may
fit the data better.2 However, good in-sample fit does not necessarily translate into
good out-of-sample forecasting performance; for example, an unrestricted VAR
may have many parameters which are imprecisely estimated, particularly in small
samples. The Bayesian framework is a way of introducing prior information and
therefore producing more precise parameter estimates. A common prior used for
VARs is that the series are very persistent, which is referred to as the Minnesota

1 Sometimes a distinction is made between DSGE and new-Keynesian models, with the former
used to refer to relatively large models. We use the terms interchangeably.

2 The trade-off between theoretical coherence and fit is the basis of the Pagan diagram
(Pagan 2003).
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prior.3 While the Minnesota prior has aided the forecasting ability of VAR models,
it is a purely statistical device. As an alternative, we use a small DSGE model as
the source of prior information for the VAR.

2. Methodology – Estimation

This section provides a brief overview of the methodology used to estimate the
BVAR-DSGE; further details can be found in Del Negro and Schorfheide (2004),
which we follow closely.

2.1 Some Notation

Let the parameters of the DSGE model, which we will describe further below, be
denoted by the vector θ . Let the column vector of n observable variables be yyyt ,
which are also assumed to be the variables in the VAR. That is,

yyyt = Φ0 +Φ1yyyt−1 +Φ2yyyt−2 + ...+Φpyyyt−p +uuut , (1)

where: Φ0 is a vector of constants; Φ1..p are matrices of VAR parameters; and
uuut ∼ N(000,Σu).

4 This can be written more compactly as Y = XΦ +U , where: Y
and U are matrices with rows yyy′t and uuu′t respectively; X has rows yyy′t−1, yyy′t−2, ...,
yyy′t−p and Φ ≡ [Φ1,Φ2, ...,Φp]

′. It is noteworthy that the number of parameters in
the DSGE model is much smaller than that in the VAR, hence the greater ability
of the VAR to fit the data.

2.2 Priors for the VAR Parameters

In this paper we want to use a DSGE model to provide information about the
parameters of the VAR. Intuitively, one way of doing this is to simulate data from
the DSGE and to combine it with the actual data when estimating the VAR. The
relative share of simulated observations compared to the actual data, λ , governs
the relative weight placed on the prior information. However, as the DSGE model
specifies the stochastic process for yyyt , rather than simulating data we can instead

3 The Minnesota prior was introduced by Litterman (1979), and extended by Doan, Litterman
and Sims (1984); an intuitive description is in Todd (1984). For an overview of Bayesian
forecasting, see Geweke and Whiteman (2006).

4 As we de-mean the data, we suppress Φ0 in what follows.
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use the solution to the log-linearised DSGE model to analytically compute the
population moments of yyyt . The role of λ therefore is to scale these moments so
as to be equivalent in magnitude to the (non-standardised) sample moments that
would have been obtained through simulation. It is then possible to formulate the
prior for the VAR parameters p(Φ,Σu|θ) (for given DSGE model parameters θ ),
in Inverted-Wishart (IW )-Normal (N) form, that is, Σu|θ ∼ IW and Φ|Σu,θ ∼ N.

The parameters of these prior densities are functions of the population moments
calculated from the DSGE model.5

2.3 Priors for the DSGE Parameters

We also have prior beliefs about the parameters of the DSGE model, p(θ). The
joint prior density of both sets of parameters is:

p(Φ,Σu,θ) = p(Φ,Σu|θ)p(θ).

2.4 The VAR Posterior

The posterior distribution of the VAR parameters Φ and Σu, p(Φ,Σu|Y,θ), from
which we will draw parameters when forecasting, is obtained by combining
the prior with information from the data, namely the likelihood function. The
likelihood, reflecting the distribution of the innovations (uuuttt), is multivariate
normal, which is particularly useful as the priors described above for the
VAR parameters are of Inverted-Wishart-Normal form, and these conjugate.
Consequently, the posterior follows the same class of distributions as the prior,
that is, Σu|θ ,Y ∼ IW and Φ|Σu,θ ,Y ∼ N.6 Finally, we can simulate the posterior
for the VAR parameters by first drawing a θ from the posterior of the DSGE
parameters and then sampling from these distributions.

5 See Equations (24) and (25) in Del Negro and Schorfheide (2004).

6 Once again we have suppressed the parameters of the posterior distributions – see
Equations (30) and (31) in Del Negro and Schorfheide (2004).
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2.5 Choosing the Lag Length and the Weight on the Prior, λ

The VAR posterior is conditional on a choice of λ , the relative weight given to the
DSGE prior. Let the set of possible λ be Λ, where Λ ≡ {λ1, . . . ,λi, . . . ,λq}, and
for all i, λi > 0. The approach suggested by Del Negro and Schorfheide (2004) is
to compare the model evaluated at each λ ∈ Λ, using the metric of the marginal
data density, p(Y |λ ).7 This is somewhat akin to an information criterion, and can
be obtained by integrating out the parameters of the joint density of the data and
the parameters

p(Y |λ ) ≡
ˆ

ΣΣΣu,ΦΦΦ,ΘΘΘ
p(Y,θ ,Σu,Φ|λ )d(Σu,Φ,θ)

=
ˆ

ΣΣΣu,ΦΦΦ,ΘΘΘ
p(Y |θ ,Σu,Φ)p(θ ,Σu,Φ|λ )d(Σu,Φ,θ),

where ΣΣΣu, ΦΦΦ and ΘΘΘ are the parameter spaces (that is, the sets of possible parameter
values) for Σu, Φ and θ . As pointed out by Christiano (2007), the integration
involved in calculating the marginal data density is computationally intensive.
However, recall that the joint prior density of the VAR and DSGE parameters,
p(Φ,Σu,θ |λ ), equals p(Φ,Σu|θ ,λ )p(θ), and the prior of the VAR parameters
given θ is of Inverted-Wishart-Normal form. The latter enables the integrals with
respect to the VAR parameters to be calculated analytically, leaving only the
integral with respect to θ to be calculated in order to approximate p(Y |λ ).8 An
‘optimal’ λ , λ̂ , could then be chosen to maximise p(Y |λ ), that is,

λ̂ = argmax
λ∈Λ

p(Y |λ ). (2)

As noted by Del Negro and Schorfheide (2004), we could also use the marginal
data density to pick the lag length of the VAR, p.

However, as the primary purpose of this model is forecasting, an alternative
approach is to choose λ and the lag length with respect to the out-of-sample
forecasting performance, which we describe in Section 4.2.

7 The notation of the marginal data density follows Del Negro et al (2007). Also, previously we
suppressed the fact that many of the densities (for example, the joint prior density for the VAR
and DSGE parameters) are conditional on λ .

8 This is done using Geweke’s harmonic mean estimator (Geweke 1999); see also An and
Schorfheide (2007).
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2.6 The DSGE Model

The DSGE model we use as the source of the prior information is a variant of the
model by Lubik and Schorfheide (2007), which itself is a simplified version of
Galí and Monacelli (2005). The Lubik and Schorfheide (2007) model has
previously been used in the estimation of a BVAR-DSGE for New Zealand by
Lees, Matheson and Smith (2007), and while not without criticism (for example,
Fukač and Pagan forthcoming), as argued by Lees et al (2007) it probably
represents the smallest possible DSGE model for a small open economy. It is worth
noting that our model lacks many of the traditional features used in DSGE models
to enhance their fit, such as habit persistence in consumption or indexation in price
setting. The model has microeconomic foundations; however, as they are not our
focus we only provide a brief overview of the key final log-linearised equations of
the model which we will use.9

yt = Etyt+1−χ
(
Rt−Etπt+1

)
+ χρzzt+αχEt∆qt+1 +

(
χ

τ
−1
)

Et∆y∗t+1,(3)

πt = βEtπt+1 +αβEt∆qt+1−α∆qt +
κ

χ
(yt− ȳt) , (4)

∆et = πt− (1−α)∆qt−π
∗
t , (5)

Rt = ρRRt−1 +(1−ρR)(ψ1πt +ψ2yt)+ εRt
, (6)

∆qt = ρ∆q∆qt−1 + ε∆qt
, (7)

y∗t = ρy∗y
∗
t−1 + εy∗t , and (8)

π
∗
t = ρπ

∗π
∗
t−1 + επ

∗
t
, (9)

where: χ ≡ τ + α (2−α)(1− τ) ; ȳt ≡
(
1− χ

τ

)
y∗t ; ∆ is the first difference

operator; and Et is the expectation operator conditional on period t information.
An appealing feature of the model is that world (and hence domestic) technology,
At , is assumed to follow a non-stationary process. A consequence of this is that
some of the real variables (such as output) are normalised by technology before the
log-linearisation. All variables are expressed as (approximate) per cent deviations
from their steady-state values. Technology is assumed to grow at the rate zt ,
that is, zt ≡ lnAt − lnAt−1, which follows an AR(1) process, zt = ρzzt−1 + εzt

.

Output is denoted by yt , Rt denotes the quarterly gross interest rate, qt is the

9 See Appendix A and the above references (particularly Galí and Monacelli 2005) for the
derivations. Lubik and Schorfheide (2005) is also a useful reference.
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terms of trade, πt is inflation, et is the nominal exchange rate (defined so that
a fall is an appreciation), ȳt is the level of potential output (that is, the level of
output consistent with flexible prices), and variables with a superscript ∗ are the
equivalent world variables.

Equation (3) is the IS curve, which is derived from the consumers’ Euler equation;
the parameters α , β and τ are the import share of domestic consumption, the
discount factor and the intertemporal elasticity of substitution, respectively. Output
depends on the expectations of future output both at home and abroad, the real
interest rate, expected changes in the terms of trade and technology growth.

Equation (4) is the open-economy Phillips curve, which can be derived from
assuming a continuum of monopolistic firms which only use labour in production
and set prices à la Calvo. Movements in the output gap affect inflation as they are
associated with changes in real marginal costs; the parameter κ affects the slope of
the Phillips curve and is a function of other deeper parameters, but here is taken to
be structural. Changes in the terms of trade enter the Phillips curve reflecting the
fact that some consumer goods are imported and also reflecting the assumption of
relative purchasing power parity (PPP), as per Equation (5).

Monetary policy, as specified in Equation (6), is assumed to partially adjust the
nominal rate (at rate 1− ρR) to the level suggested by a Taylor rule, following
Clarida, Galí and Gertler (2000). The weights on inflation and output in the Taylor
rule are given by ψ1 and ψ2.

10

The change in the terms of trade in this model is assumed to follow an AR(1)
process, as are world output y∗t and inflation π

∗
t , with autoregression coefficients

ρ∆q, ρy∗ and ρπ
∗, respectively. The structural shocks are denoted by εvariablet

.

10 We deviate from Lubik and Schorfheide (2007) and assume that the Taylor rule does not include
the exchange rate.
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3. Data and DSGE Priors

3.1 DSGE Priors

The priors for the DSGE parameters are given in Table 1 and Figure 1. These
differ from those in Lubik and Schorfheide (2007), who apply their model to four
countries, and vary only a small subset of the priors for each country. Our priors are
selected in part by examining the results of recent DSGE modelling for Australia
and by reference to economic theory. Additionally, we draw on past experience in
modelling the Australian economy at the Reserve Bank of Australia. However, for
many parameters, the differences between our priors and theirs are small. Rather
than place a prior on the discount factor, we place a prior (and estimate) the steady-

state (real) interest rate rss. Note that β = e
−rss
400 . The standard deviations of the five

structural shocks are denoted by σ
ε

variable.

Table 1: DSGE Parameter Priors
Parameter Distribution Mean Standard deviation

Households and firms
τ Beta 0.6 0.1
α Beta 0.2 0.011
rss Gamma 2.5 0.5

Phillips curve
κ Beta 0.3 0.1

Taylor rule
ρR Beta 0.77 0.1
ψ1 Gamma 1.6 0.2
ψ2 Gamma 0.4 0.25

Exogenous persistence
ρ∆q Beta 0.4 0.2
ρ

π
∗ Beta 0.8 0.1

ρy∗ Beta 0.9 0.05
ρz Beta 0.5 0.2

Exogenous shock standard deviations
σ

ε

R Inverse gamma 0.1 0.2
σ

ε

∆q Inverse gamma 1.9 0.8
σ

ε

z Inverse gamma 0.2 0.1
σ

ε

y∗ Inverse gamma 0.5 0.2

σ
ε

π
∗ Inverse gamma 0.15 0.15
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Figure 1: DSGE Parameter Priors
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The priors we place on the standard deviations of the structural shocks are tighter
and have lower mean values than those in Lubik and Schorfheide (2007).11 This
reflects our view that the structural shocks probably were quite moderate for much
of the sample period for the Australian economy (1993 onwards; see Section 3.2).
For example, we suspect that monetary policy shocks have generally been small
in magnitude during the inflation-targeting regime. The mean of our prior on the
standard deviation of terms of trade growth shocks is higher than that set for the
other shocks, to account for the apparent volatility of this series.

Turning to the structural parameters of the DSGE model, our prior for the
import share of consumption (α) has the same mean as used by Lubik and
Schorfheide (2007), namely 0.2, but is considerably tighter, reflecting that over
the estimation period the import share of GDP was around this value (and
that output equals consumption in this model). The mean of the prior for the
intertemporal elasticity of substitution (τ) is 0.6, which is larger than the mode
used by Nimark (2007) (0.3), but less than the mean value of Justiniano and
Preston (forthcoming) (0.8). The parameter κ , together with α and τ , determines
the slope of the Phillips curve. We select the mean of the prior for κ so that (given
the priors of these other parameters) it implies a similar slope to that estimated by
Kuttner and Robinson (forthcoming) using GMM over the inflation-targeting
period.

For the parameter ψ1 in the Taylor rule (Equation (6)), which describes the
monetary policy reaction to deviations of inflation from its steady state, the
probability mass is distributed over values greater than one. This ensures that
the real interest rate increases in response to higher inflation (that is, the Taylor
principle is satisfied). Further, consistent with previous studies – which tend to
find a considerable degree of interest rate smoothing (for example, de Brouwer
and Gilbert 2005) – we place a large prior on the parameter ρR.

11 Note that this, in part, reflects our shorter estimation period.
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3.2 Data

There are five observable variables in the model: growth in chain-volume non-farm
GDP (∆yobst

); the quarterly average cash rate (Robst
); trimmed-mean consumer

price index (CPI) inflation (πobst
); the change in the inverse of the nominal trade-

weighted exchange rate (∆eobst
) (consequently, negative values correspond to an

appreciation); and growth in the terms of trade (∆qobst
) – that is, the ratio of

export to import prices. The data sources are given in Appendix B. We multiply
log differences (for example, non-farm output) by 100, so as to approximate
percentages.12 We de-mean all of the data as the DSGE model variables are in
terms of log deviations from steady state. The estimation sample is from 1993:Q1,
when inflation targeting began in Australia, until 2007:Q4.

3.3 Measurement Equations

The measurement equations, given below, map the observed data (yyyt , which are
also the variables in the VAR and are on the left-hand side below) into the model
variables (shown on the right-hand side):

∆yobst
= ∆yt + zt (10)

Robst
= 4Rt (11)

πobst
= πt (12)

∆eobst
= ∆et (13)

∆qobst
= ∆qt . (14)

Recall that in the DSGE model, output has been normalised by technology.
Consequently, observed output growth is related to both output and technology
growth as per Equation (10). The cash rate is expressed on a per annum basis,
whereas the model interest rate is the gross one-period return. Also, as we have
log-linearised the model (about its steady state), Rt more precisely is the log
deviation of the gross rate from its steady state.

12 Unlike Lubik and Schorfheide (2007), we do not annualise observable quarterly inflation.
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4. Results – Estimation

4.1 DSGE

Table 2 presents the mean of the posterior distributions of the DSGE parameters;
the posterior densities are shown in Figure C1 in Appendix C.13,14

Examples of parameters where the data shift the posterior distribution away from
the prior include the intertemporal elasticity of substitution (τ), for which we find a
posterior mean of 0.5. This indicates that consumers are less willing than expected
to change their consumption decisions in response to interest rate shocks. For the
persistence of technology shocks (ρz), we find a posterior mean of 0.29, which is
broadly similar to the 0.4 estimate of Lubik and Schorfheide (2007).

We obtain 0.8 as our posterior mean for the nominal interest rate smoothing
parameter ρR, which is comparable to the estimates from other recent DSGE
studies, such as the posterior mode of 0.87 obtained by Nimark (2007). Our
posterior mean estimates of ψ1 and ψ2 suggest that monetary policy responds more
aggressively to deviations of inflation from steady state than output, consistent
with Nimark.

Also interesting is that we find that the posterior mean of the persistence of foreign
inflation (ρπ

∗) is lower than expected and that the posterior mean of the standard
deviation of foreign inflation shocks (σ ε

π
∗) is considerably larger than expected.

This reflects the fact that the foreign inflation shock π
∗
t captures deviations from

the rather strict assumption of PPP (a point noted by Lubik and Schorfheide 2007).

13 We construct the posteriors using the Metropolis-Hastings algorithm with a Markov
chain 500 000 observations long. To ensure convergence we drop the first 250 000
simulations and simulate a second chain for comparison. All estimation was conducted using
Dynare 4, in Matlab R2007b and R2008a. Dynare is developed by S Adjemian, M Juillard and
O Kamenik; see <http://www.cepremap.cnrs.fr/juillard/mambo/index.php> for further
information. We manage Dynare 4 with TortoiseSVN, available from <http://tortoisesvn.net/>.

14 These posterior densities depend on λ via the marginal likelihood, P(Y |θ) (see Equation (A.2)
in Del Negro and Schorfheide (2004)). They are for λ = 1.75, which is selected in Section 4.2.
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Table 2: DSGE Estimation Results
Parameter Prior mean Posterior mean 90 per cent interval

Households and firms
τ 0.6 0.50 [0.36, 0.66]
α 0.2 0.20 [0.18, 0.21]
rss 2.5 2.48 [1.66, 3.26]

Phillips curve
κ 0.3 0.42 [0.28, 0.58]

Taylor rule
ρR 0.77 0.81 [0.75, 0.87]
ψ1 1.6 1.62 [1.31, 1.94]
ψ2 0.4 0.40 [0.07, 0.67]

Exogenous persistence
ρ∆q 0.4 0.57 [0.49, 0.65]
ρ

π
∗ 0.8 0.53 [0.36, 0.70]

ρy∗ 0.9 0.92 [0.86, 0.98]
ρz 0.5 0.29 [0.05, 0.74]

Exogenous shock standard deviations
σ

ε

R 0.1 0.08 [0.06, 0.10]
σ

ε

∆q 1.9 1.23 [1.01, 1.43]
σ

ε

z 0.2 0.35 [0.10, 0.47]
σ

ε

y∗ 0.5 0.54 [0.25, 0.82]

σ
ε

π
∗ 0.15 2.91 [2.33, 3.50]

4.2 Selection of λ and Lag Length

We consider lag lengths of 2, 3 and 4 for the VAR component of the BVAR-
DSGE. To determine the relative weight on the DSGE model, we let the set of
possible λ be Λ = [0.75,1,1.25,1.5,1.75,2,5,10,100000].15 Using the marginal
data density measure of Equation (2), which focuses on in-sample fit, we find
the best combination to be a VAR(3) with λ = 1.16 This implies that we place

15 Placing a large weight on λ is akin to estimating the DSGE model. The unrestricted VAR we
estimate separately in Section 5.1 is effectively λ = 0, since it places zero weight on the DSGE
model.

16 The means of the posterior distributions of the DSGE parameters when λ = 1 are similar to
those presented in Table 2.
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equal weight on the DSGE model and the VAR, which was also found for
New Zealand by Lees et al (2007). Alternatively, a lower weighting of 0.6 was
used by Del Negro and Schorfheide (2004).

To select λ with reference to the out-of-sample forecasting performance, we
estimate BVAR-DSGE models corresponding to each possible value of λ over the
grid Λ, at each lag length. We truncate the sample to end in 2001:Q4, estimate the
model, construct the forecasts, advance the end-date by one quarter and repeat
the process, until the last end-date of 2007:Q3. To construct the forecasts we
first draw a matrix of VAR parameters Φ and a variance-covariance matrix Σu
from their posterior distributions. Given Σu we draw a vector of innovations uuut+1
from the multivariate-normal distribution N(000,Σu), and compute yyyt+1 using the
VAR with parameters Φ. Further draws of innovations enable us to compute the
sequence of forecasts yyyt+2, yyyt+3, ..., yyyt+h, using previous forecasts for the lags
in the VAR (that is, the forecasts are dynamic). By repeating this entire process
1 000 times we construct a distribution of forecasts, which we summarise by
calculating the mean forecast at each horizon. As we do this for each estimation
end-date, we obtain a sequence of forecasts for each horizon; for example, we
construct 24 one-quarter-ahead forecasts (the last being those made in 2007:Q3
for 2007:Q4) and 17 eight-quarter-ahead forecasts. We then evaluate the forecasts
by calculating the Root-Mean-Squared Error (RMSE).

In the results that follow, we focus on the models’ ability to forecast output
growth, inflation and interest rates. These are the key policy variables, and
the other variables are difficult to forecast (particularly the exchange rate; see
Meese and Rogoff 1983).

Table 3 presents the RMSE of the forecasts for each variable one quarter ahead,
and for their year-ended changes four and eight quarters ahead, except for interest
rates, where we report its value at these horizons. These forecasts are computed
for different values of λ in the manner just described, using a VAR with three
lags. It suggests that by moderately increasing the weight on the DSGE prior
from that recommended by the marginal data density – to between 1.5 and 2 –
we generally improve the model’s forecasting performance, particularly for output
growth and inflation one quarter ahead. Placing an even larger weight on the prior
further improves the year-ahead interest rate forecasts, but at the expense of some
deterioration in the near-term growth and interest rate forecasts.
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Table 3: RMSE of BVAR-DSGE over Different Values of λ

2002:Q1–2007:Q4, VAR(3), percentage points
λλλ One quarter ahead Four quarters ahead Eight quarters ahead

Quarterly Year-ended Year-ended
Output

0.75 0.338 0.629 0.742
1 0.333 0.622 0.756
1.25 0.329 0.618 0.766
1.5 0.326 0.614 0.796
1.75 0.326 0.613 0.789
2 0.324 0.609 0.801
5 0.337 0.588 0.812

10 0.354 0.607 0.779
Interest rates

0.75 0.201 0.709 0.713
1 0.197 0.665 0.687
1.25 0.195 0.631 0.662
1.5 0.196 0.585 0.624
1.75 0.196 0.581 0.619
2 0.196 0.560 0.603
5 0.210 0.472 0.519

10 0.216 0.439 0.502
Inflation

0.75 0.167 0.332 0.341
1 0.163 0.335 0.337
1.25 0.160 0.337 0.330
1.5 0.155 0.344 0.339
1.75 0.156 0.345 0.324
2 0.150 0.339 0.328
5 0.150 0.373 0.350

10 0.149 0.383 0.365

Note: The interest rate forecasts are for its level at all horizons.
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It is also possible to compare the forecasting performance at different lag lengths
for the VAR (Table E1 in Appendix E). In general, the interest rate forecasts are
most accurate when only two lags are used, whereas for the other variables the
one-year-ahead forecasts are improved by using three lags. We place a greater
weight on the accuracy of the inflation and output forecasts relative to those for
interest rates, and consequently the BVAR-DSGE results in the remainder of this
paper are computed with a VAR(3) and λ = 1.75.17

5. Forecasting Performance Comparison

5.1 The Benchmarks

In order to examine the forecasting gain from using priors from a DSGE model,
we need some benchmark models. There are several natural candidates. The first
is an unrestricted (reduced-form) VAR, which makes no attempt to identify the
structural shocks.18 The second is a Bayesian reduced-form VAR with Minnesota-
style priors. Minnesota BVARs historically have proven to be a useful forecasting
tool (for a recent Australian example see Gerard and Nimark 2008). Briefly, a
Minnesota VAR prior usually assumes that the level of each series is highly
persistent, that is, they follow a unit root (possibly with drift). Consequently, the
mean of the prior for the coefficient on the first own lag is one, and the mean
of the priors for the coefficients on other lags are zero, and these priors are held
more tightly for longer lags.19 To make them comparable, the unrestricted and
Minnesota VARs were estimated using the same variables as were observable for
the BVAR-DSGE. As some of these series (such as output) are already expressed
as growth rates rather than levels, the Minnesota prior was modified so as to have

17 Ideally, the latter results would be constructed over a separate sample than that used to select
λ . However, as we wished to only use the inflation-targeting period, this was impractical.

18 The UVAR was estimated in EViews 6.0.
19 More precisely, the standard deviation of the prior on coefficient Φp jk

(recall p denotes the lag

length) is π
−1
1 π

1−I( j,k)
2 p−π3 , where I( j,k) is an indicator function that equals 1 if j = k, and 0

otherwise. π1 is the overall tightness of the prior, which we set at 0.2. π2 enables the prior to
be tighter on lags of other variables, however, as we use an Inverted-Wishart Normal prior and
Gibbs sampling we impose π1 = π2 (see Kadiyala and Karlsson 1997). Finally, π3 > 0 imposes a
tighter prior on longer lags, and we set this to 0.5 (this is known as harmonic decay). Estimation
was conducted in WinRATS 7.0 by Estima, using code by Tom Doan available on the Estima
website (<www.estima.com>). One thousand observations were discarded as burn-in.
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a mean of zero for their first own lag.20 For simplicity we impose the same lag
length of three across the models. Finally, another natural benchmark is the DSGE
model itself, which we approximate by setting λ = 100 000. The forecasts from
these benchmark models were constructed in the same way as those for the BVAR-
DSGE.

5.2 Forecast Comparisons

To evaluate the forecasting performance of the models we construct out-of-sample
forecasts and compute their RMSE. Table 4 presents the forecasting performance
of the BVAR-DSGE relative to the benchmark models.

Table 4: RMSE of BVAR-DSGE
2002:Q1–2007:Q4, VAR(3)

Variable One quarter ahead Four quarters ahead Eight quarters ahead
Quarterly Year-ended Year-ended

Relative to unrestricted VAR
Output growth 0.84 0.89 1.08
Nominal cash rate 0.80 0.61 0.79
Underlying inflation 0.84 1.08 0.99

Relative to DSGE
Output growth 0.88 0.94 1.05
Nominal cash rate 0.88 1.44 1.24
Underlying inflation 1.06 0.87 0.79

Relative to Minnesota VAR
Output growth 0.92 0.74 0.96
Nominal cash rate 0.44 0.89 1.02
Underlying inflation 1.00 1.13 0.96

Note: The interest rate forecasts are for its level at all horizons.

To interpret this table, note that if the entry in a particular cell is less than one, then
the BVAR-DSGE outperforms the corresponding benchmark model. Focusing
initially on the UVAR, this is always the case for the one-quarter-ahead forecasts.
It is also true for output one year ahead, but not for inflation. Compared to the

20 By using the same variables we may, to some extent, make the benchmark models ‘straw men’;
for example, if one was independently constructing a Minnesota BVAR then possibly a larger
or different set of variables could be used.
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DSGE model alone, the BVAR-DSGE performs well at forecasting inflation at
long horizons. The gain in forecasting performance may reflect the tendency for
DSGE models to be under-parameterised. The combination of a DSGE with a
VAR model increases the number of free parameters, allowing for better fitting
of the data. However, the DSGE outperforms in forecasting the cash rate, apart
from one quarter ahead. This was expected since when we selected the relative
weighting on the DSGE model we placed more importance on the output and
inflation forecasting accuracy, partly at the cost of interest rates.

Compared to the Minnesota VAR we see some moderate forecasting gains. The
BVAR-DSGE forecasts more accurately both output growth at any horizon and
the cash rate one year ahead. The inflation forecasts of the BVAR-DSGE are
competitive. These results suggest that the theoretical information in the DSGE
prior is a useful complement to the purely statistical Minnesota prior.

Overall, the results show that the BVAR-DSGE is competitive at forecasting
inflation and output. Table 5 presents the absolute forecasting performance of the
BVAR-DSGE model.

Table 5: RMSE of BVAR-DSGE
2002:Q1–2007:Q4, VAR(3), percentage points

Variable One quarter ahead Four quarters ahead Eight quarters ahead
Quarterly Year-ended Year-ended

Output growth 0.33 0.61 0.79
Nominal cash rate 0.20 0.58 0.62
Underlying inflation 0.16 0.34 0.32
Change in nominal TWI 3.07 8.79 8.81
Change in terms of trade 1.34 4.68 7.01

Note: The interest rate forecasts are for its level at all horizons.

The RMSEs of the three key variables – output growth, underlying inflation and
the cash rate – are noticeably lower than those for the exchange rate and terms
of trade growth, which is unsurprising given the volatility in the latter series, as
mentioned previously.



18

6. Conclusions

With the principal objective of macroeconomic forecasting, we have used a
simple, small open economy DSGE model to provide prior information for a
structural Bayesian VAR model. The performance of the BVAR-DSGE model
in forecasting the key variables of output growth and inflation is competitive
with the three benchmark models we have considered; for example, its inflation
forecasts outperform those from the DSGE alone at most horizons. However,
the DSGE model we have used as the source of prior information is particularly
simple. Future work could extend the BVAR-DSGE model in at least two ways:
introducing common features used to improve the fit of DSGE models (such as
habit persistence in consumption); and improving its open economy aspects. The
main result we take from our analysis is that the BVAR-DSGE methodology is a
useful way of balancing theoretical and data coherence, particularly when the aim
is to build a model for forecasting.
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Appendix A: Deriving the IS Equation

In this appendix, to be explicit, we change the notation slightly, and distinguish
variables which have been log-linearised. We denote log deviations from steady
state as lower-case variables with a superscript ~.21

A.1 The Consumer’s Problem

Let the consumer’s utility be of the form in Lubik and Schorfheide (2005), namely

U = E0

∞∑
t=0

β
t

[
(Ct/At)

1− 1
τ

1− 1
τ

−Nt

]
. (A1)

Compared to Lubik and Schorfheide (2005), a few minor modifications have
been made: τ is now the intertemporal elasticity of substitution (rather than the
coefficient of relative risk aversion); habits in aggregate consumption (Ct) have
been removed; and technology is assumed to be common across all countries (At).
Nt denotes the labour input.

We specify the consumer’s budget constraint as:

PtCt +Bt+1 ≤WtNt +Rt−1Bt , (A2)

where: Pt is the price of aggregate consumption; and Wt is the wage rate. For
simplicity we have expressed the budget constraint in terms of bond holdings Bt
and their return Rt .

A.2 First-order Conditions

We express the consumer’s problem above as a Lagrangian, L :

L0 = E0

∞∑
t=0

(
β

t

[
(Ct/At)

1− 1
τ

1− 1
τ

−Nt

]
−λt

(
PtCt +Bt+1−WtNt−Rt−1Bt

))
(A3)

The relevant first-order conditions are:
∂Lt

∂Bt+1
=−λt +EtRtλt+1 = 0

∂Lt
∂Ct

= β
t 1

A
1− 1

τ
t

C
− 1

τ

t −λtPt = 0.

21 This appendix draws on work by Jamie Hall. We also thank Adam Cagliarini for his assistance.
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Eliminating λt yields

C
− 1

τ

t

PtA
1− 1

τ

t

= Et

Rt
βC
− 1

τ

t+1

Pt+1A
1− 1

τ

t+1

 .

If ct ≡
Ct
At

, then this can be expressed as

c
− 1

τ

t = βEt

(
c
− 1

τ

t+1
Pt

Pt+1

At
At+1

Rt

)
, (A4)

which is the Euler equation.

A.3 Log-linearisation

We log-linearise Equation (A4) using the steady-state condition that β
−1 = R

(assuming no steady-state inflation):

c̃t = Et c̃t+1− τ
(
r̃t−Et π̃t+1

)
+ τEt z̃t+1. (A5)

A.4 The IS Equation

In order to obtain the IS equation we use two results from Galí and
Monacelli (2002), namely their Equations (25) and (16):

ỹt = ỹ∗t −χ q̃t , and (A6)

c̃t = c̃∗t − τ(1−α)q̃t . (A7)

Note that these have been modified to take into account differences in notation;
they define the terms of trade as the price of imports relative to exports (and
denote it by st), whereas qt is defined inversely to this. Similarly, they define the
coefficient of relative risk aversion as σ , so τ = σ

−1. Also, output (yt) has been
normalised by technology, which is not necessary in their paper as technology is
assumed to be stationary. From Equations (A6) and (A7), and using the market-
clearing condition c̃∗t = ỹ∗t , yields their Equation (27):

c̃t =
χ− τ(1−α)

χ
ỹ∗t +

τ(1−α)
χ

ỹt . (A8)
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We can substitute Equation (A8) into Equation (A5) for c̃t and Et c̃t+1, which
yields:

χ−τ(1−α)
χ

ỹ∗t + τ(1−α)
χ

ỹt = Et

(
χ−τ(1−α)

χ
ỹ∗t+1 + τ(1−α)

χ
ỹt+1

)
−τ
(
r̃t−Et π̃t+1

)
+ τEt z̃t+1.

Solving for (1−α)ỹt :

(1−α)ỹt = Et

(
χ− τ(1−α)

τ
∆ỹ∗t+1 +(1−α)ỹt+1

)
−χ

(
r̃t−Et π̃t+1

)
+χEt z̃t+1.

Hence,

ỹt = Et

(
χ− τ(1−α)

τ
∆ỹ∗t+1 + ỹt+1−α∆ỹt+1

)
−χ

(
r̃t−Et π̃t+1

)
+ χEt z̃t+1.

We can first difference Equation (A6) to obtain an expression for ∆ỹt+1;
substituting this into the equation above yields the IS equation:

ỹt = Et ỹt+1−χ
(
r̃t−Et π̃t+1

)
+ χEt z̃t+1 +αχEt∆q̃t+1 +

(
χ

τ
−1
)

Et
(
∆ỹ∗t+1

)
.

(A9)
In contrast to the IS equation in Lubik and Schorfheide (2007), the coefficients
on the expected growth in the terms of trade and technology are positive (and the
latter is not unity).
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Appendix B: Data Sources

Data sources are listed in Table B1 below. All data are available upon request.

Table B1: Data Sources
Series Source(s)
Chain-volume non-farm GDP December 2007 National Accounts;

ABS Cat No 5204.0
Terms of trade As above
Nominal cash rate RBA Bulletin Table ‘F.1 Interest Rates and

Yields – Money Market’
Trimmed-mean CPI December 2007 Consumer Price Index,

ABS Cat No 6401.0; RBA
Nominal trade-weighted exchange rate RBA Bulletin Table ‘F.11 Exchange Rates’
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Appendix C: DSGE Posterior Distributions

Figure C1: DSGE Parameter Priors and Posteriors

—  Prior
—  Posterior

0

20

40

0.0 0.3 0.6
0

2

4

0 3 6
0

4

8

-0.5 0.0 0.5 1.0

0

2

4

-2 0 2 4
0

5

10

0 4 8
0

3

6

-0.6 0.0 0.6 1.2

0

20

40

0.0 0.2 0.4
0

2

4

-0.8 0.0 0.8 1.6
0

3

6

-0.6 0.0 0.6 1.2

0

6

12

0.4 0.8 1.2
0.0

1.5

3.0

0 2 4
0.0

1.2

2.4

-2 0 2 4

0

5

10

0.0 0.5 1.0
0.0

2.5

5.0

-1 0 1 2
0

7

14

0.5 0.8 1.1

0.0

0.5

1.0

-4 0 4 8

 σR
ε

  σDq
ε

 σz
ε

 σy*
ε

 σπ*
ε

 τ

 α  κ

 ψ1  ψ2

  ρDq

 ρR

 ρz

 ρπ*  ρy*

rss
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parameter.
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Appendix D: Impulse Responses

D.1 Identification of the Structural Model

While it is not necessary to identify the structural VAR for the purpose of
forecasting, Del Negro and Schorfheide (2004) demonstrate how it is possible
to do so. This enables us to compute impulse responses that can be used to
provide economic interpretation of the forecasts. Briefly, the mapping between
the reduced-form and structural model is

uuut = ΣtrΩεεε t , (D1)

where: Σtr is the Cholesky decomposition of Σu (that is, ΣtrΣ
′
tr = Σu,

with Σtr lower triangular); Ω is an orthonormal matrix and εεε t is a vector of
structural shocks. Essentially, the Cholesky decomposition allows us to identify
the structural model, but only up to a rotation (Ω). The insight from Del Negro
and Schorfheide (2004) is that we can use the DSGE to pick Ω by equating the
instantaneous effects of the structural shocks from the DSGE and the VAR. To
do this, note that for the DSGE model there exists a matrix A0(θ) that gives this
contemporaneous effect, that is, ∂yyyt

∂εεε
′
t
= A0(θ). Applying a LQ transformation (akin

to a QR transformation) to A0(θ) yields A0(θ) = LQ, where L is a lower-triangular
matrix and Q is orthonormal. Alternatively, from the VAR, Equations (1) and (D1),
∂yyyt
∂εεε
′
t
= Σtr(θ)Ω(θ). Consequently, we set Ω = Q.

D.2 BVAR-DSGE Impulse Responses

Figure D1 shows the DSGE impulse responses (orange lines) and the BVAR-
DSGE impulse responses (blue lines, with the corresponding 90 per cent highest
posterior density intervals) for a shock to the cash rate of 25 basis points.22 In the
BVAR-DSGE, the maximum reduction in inflation is around 0.35 percentage
points, which is somewhat larger than the 0.1 percentage point reduction reported
in Nimark (2007) or the 0.05 percentage point reduction found by Jääskelä and
Nimark (forthcoming). We also estimate the peak impact of a 25 basis point
monetary policy shock on output growth to be around 0.3 percentage points, which
is larger than in Jääskelä and Nimark (0.1 percentage points). Relative to the

22 A 1 standard deviation shock is approximately equal to 8 basis points.
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DSGE model, the BVAR-DSGE suggests that the impact of a monetary policy
shock on output growth is more prolonged.

Figure D1: Selected Impulse Responses to a 25 Basis Point Cash Rate Shock
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Appendix E: Varying Lag Length

Table E1 shows the impact of varying the lag length and λ on the forecast
performance.

Table E1: RMSE of BVAR-DSGE over Different Lags and Values of λ

2002:Q1–2007:Q4, percentage points
λλλ One quarter ahead Four quarters ahead Eight quarters ahead

Quarterly Year-ended Year-ended
Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4

Output
0.75 0.364 0.338 0.389 0.753 0.629 0.759 0.811 0.742 0.758
1 0.358 0.333 0.373 0.739 0.622 0.730 0.822 0.756 0.759
1.25 0.354 0.329 0.362 0.729 0.618 0.710 0.835 0.766 0.765
1.5 0.352 0.326 0.353 0.714 0.614 0.690 0.847 0.796 0.771
1.75 0.348 0.326 0.347 0.700 0.613 0.676 0.841 0.789 0.780
2 0.347 0.324 0.342 0.688 0.609 0.663 0.840 0.801 0.789
5 0.356 0.337 0.340 0.627 0.588 0.589 0.798 0.812 0.829

10 0.365 0.354 0.346 0.631 0.607 0.598 0.792 0.779 0.789
Interest rates

0.75 0.167 0.201 0.208 0.545 0.709 0.786 0.575 0.713 0.784
1 0.166 0.197 0.204 0.514 0.665 0.741 0.552 0.687 0.757
1.25 0.166 0.195 0.200 0.491 0.631 0.706 0.532 0.662 0.731
1.5 0.167 0.196 0.200 0.477 0.585 0.677 0.523 0.624 0.709
1.75 0.170 0.196 0.201 0.458 0.581 0.655 0.504 0.619 0.687
2 0.173 0.196 0.201 0.450 0.560 0.634 0.495 0.603 0.670
5 0.200 0.210 0.211 0.417 0.472 0.527 0.478 0.518 0.564

10 0.214 0.216 0.215 0.415 0.439 0.466 0.485 0.502 0.523
Inflation

0.75 0.154 0.167 0.178 0.348 0.332 0.354 0.297 0.341 0.374
1 0.152 0.163 0.171 0.357 0.335 0.351 0.304 0.337 0.374
1.25 0.151 0.160 0.166 0.363 0.337 0.350 0.312 0.330 0.370
1.5 0.149 0.155 0.162 0.373 0.344 0.349 0.338 0.339 0.368
1.75 0.149 0.156 0.159 0.377 0.345 0.350 0.332 0.324 0.364
2 0.148 0.150 0.157 0.379 0.339 0.349 0.338 0.328 0.363
5 0.148 0.150 0.150 0.395 0.373 0.361 0.370 0.350 0.374

10 0.141 0.149 0.149 0.392 0.383 0.362 0.380 0.365 0.362

Note: The interest rate forecasts are for its level at all horizons.
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