Skip to content
RDP 2009-01: Currency Misalignments and Optimal Monetary Policy: A Re-examination
Equation (B39)
1
−
σ
2
(
c
˜
t
2
+
c
˜
t
∗
2
)
−
1
+
ϕ
2
(
n
˜
t
2
+
n
˜
t
∗
2
)
+
(
1
−
σ
)
(
c
¯
t
c
˜
t
+
c
¯
t
∗
c
˜
t
∗
)
−
(
1
+
ϕ
)
(
n
¯
t
n
˜
t
+
n
¯
t
∗
n
˜
t
∗
)
=
(
1
−
σ
2
)
(
2
c
y
2
−
2
c
y
+
1
)
(
y
˜
t
2
+
y
˜
t
∗
2
)
−
(
1
−
σ
)
(
2
c
y
2
−
2
c
y
)
y
˜
t
y
˜
t
∗
−
(
1
+
ϕ
2
)
(
y
˜
t
2
+
y
˜
t
∗
2
)
+
(
1
−
σ
)
(
2
(
c
y
2
−
c
y
)
−
(
ν
−
1
)
c
y
+
ν
2
)
(
y
¯
t
−
y
¯
t
∗
)
(
y
˜
t
−
y
˜
t
∗
)
+
(
1
−
σ
)
ν
2
(
2
−
ν
)
2
4
D
2
Δ
t
2
+
(
1
−
σ
)
ν
(
2
−
ν
)
(
ν
−
1
)
2
D
2
Δ
t
(
y
t
−
y
t
∗
)
+
o
(
‖
a
2
‖
)
.
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaaigdaiiaacqWFsislcqaHdpWCaeaacaaIYaaaamaabmaabaGa bm4yayaaiaWaa0baaSqaaiaadshaaeaacaaIYaaaaOGaey4kaSIabm 4yayaaiaWaa0baaSqaaiaadshaaeaacqGHxiIkcaaIYaaaaaGccaGL OaGaayzkaaGae8NeI0YaaSaaaeaacaaIXaGaey4kaSIaeqy1dygaba GaaGOmaaaadaqadaqaaiqad6gagaacamaaDaaaleaacaWG0baabaGa aGOmaaaakiabgUcaRiqad6gagaacamaaDaaaleaacaWG0baabaGaey 4fIOIaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaacIcacaaIXaGa e8NeI0Iaeq4WdmNaaiykamaabmaabaGabm4yayaaraWaaSbaaSqaai aadshaaeqaaOGabm4yayaaiaWaaSbaaSqaaiaadshaaeqaaOGaey4k aSIabm4yayaaraWaaSbaaSqaaiaadshaaeqaaOWaaWbaaSqabeaacq GHxiIkaaGcceWGJbGbaGaadaqhaaWcbaGaamiDaaqaaiabgEHiQaaa aOGaayjkaiaawMcaaiab=jHiTiaacIcacaaIXaGaey4kaSIaeqy1dy MaaiykamaabmaabaGabmOBayaaraWaaSbaaSqaaiaadshaaeqaaOGa bmOBayaaiaWaaSbaaSqaaiaadshaaeqaaOGaey4kaSIabmOBayaara Waa0baaSqaaiaadshaaeaacqGHxiIkaaGcceWGUbGbaGaadaqhaaWc baGaamiDaaqaaiabgEHiQaaaaOGaayjkaiaawMcaaaqaaiabg2da9m aabmaabaWaaSaaaeaacaaIXaGae8NeI0Iaeq4WdmhabaGaaGOmaaaa aiaawIcacaGLPaaadaqadaqaaiaaikdacaWGJbWaa0baaSqaaiaadM haaeaacaaIYaaaaOGae8NeI0IaaGOmaiaadogadaWgaaWcbaGaamyE aaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaaceWG5b GbaGaadaqhaaWcbaGaamiDaaqaaiaaikdaaaGccqGHRaWkceWG5bGb aGaadaqhaaWcbaGaamiDaaqaaiabgEHiQiaaikdaaaaakiaawIcaca GLPaaacqWFsislcaGGOaGaaGymaiab=jHiTiabeo8aZjaacMcadaqa daqaaiaaikdacaWGJbWaa0baaSqaaiaadMhaaeaacaaIYaaaaOGae8 NeI0IaaGOmaiaadogadaWgaaWcbaGaamyEaaqabaaakiaawIcacaGL PaaaceWG5bGbaGaadaWgaaWcbaGaamiDaaqabaGcceWG5bGbaGaada qhaaWcbaGaamiDaaqaaiabgEHiQaaaaOqaaiab=jHiTmaabmaabaWa aSaaaeaacaaIXaGaey4kaSIaeqy1dygabaGaaGOmaaaaaiaawIcaca GLPaaadaqadaqaaiqadMhagaacamaaDaaaleaacaWG0baabaGaaGOm aaaakiabgUcaRiqadMhagaacamaaDaaaleaacaWG0baabaGaey4fIO IaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaacIcacaaIXaGae8Ne I0Iaeq4WdmNaaiykamaabmaabaGaaGOmaiaacIcacaWGJbWaa0baaS qaaiaadMhaaeaacaaIYaaaaOGae8NeI0Iaam4yamaaBaaaleaacaWG 5baabeaakiab=LcaPiab=jHiTiaacIcacqaH9oGBcqWFsislcaaIXa GaaiykaiaadogadaWgaaWcbaGaamyEaaqabaGccqGHRaWkdaWcaaqa aiabe27aUbqaaiaaikdaaaaacaGLOaGaayzkaaWaaeWaaeaaceWG5b GbaebadaWgaaWcbaGaamiDaaqabaGccqWFsislceWG5bGbaebadaqh aaWcbaGaamiDaaqaaiabgEHiQaaaaOGaayjkaiaawMcaamaabmaaba GabmyEayaaiaWaaSbaaSqaaiaadshaaeqaaOGae8NeI0IabmyEayaa iaWaa0baaSqaaiaadshaaeaacqGHxiIkaaaakiaawIcacaGLPaaaae aacqGHRaWkdaWcaaqaaiaacIcacaaIXaGaeyOeI0Iaeq4WdmNaaiyk aiabe27aUnaaCaaaleqabaGaaGOmaaaakiaacIcacaaIYaGae8NeI0 IaeqyVd4Mae8xkaKYaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiaa dseadaahaaWcbeqaaiaaikdaaaaaaGGacOGae4hLdq0aa0baaSqaai aadshaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaGGOaGaaGymaiab =jHiTiabeo8aZjaacMcacqaH9oGBcaGGOaGaaGOmaiab=jHiTiabe2 7aUjaacMcacaGGOaGaeqyVd4Mae8NeI0IaaGymaiaacMcaaeaacaaI YaGaamiramaaCaaaleqabaGaaGOmaaaaaaGccqGFuoardaWgaaWcba GaamiDaaqabaGccaGGOaGaamyEamaaBaaaleaacaWG0baabeaakiab =jHiTiaadMhadaWgaaWcbaGaamiDaaqabaGcdaahaaWcbeqaaiabgE HiQaaakiaacMcacqGHRaWkcaWGVbWaaeWaaeaadaqbdaqaaiaadgga daahaaWcbeqaaiaaikdaaaaakiaawMa7caGLkWoaaiaawIcacaGLPa aacaGGUaaaaaa@1A4C@