Skip to content
RDP 2010-01: Reconciling Microeconomic and Macroeconomic Estimates of Price Stickiness
Equation
l
t
1
η
=
w
˜
t
a
t
c
˜
t
a
t
c
˜
t
=
β
E
t
(
a
t
+
1
c
˜
t
+
1
1
Π
t
+
1
I
t
e
μ
z
+
ε
z
,
t
+
1
)
c
˜
t
a
t
h
˜
t
=
1
−
1
I
t
Λ
˜
t
=
a
t
c
˜
t
h
˜
t
=
Ξ
t
h
˜
t
−
1
1
Π
t
e
−
μ
z
−
ε
z
,
t
g
t
=
c
˜
t
c
˜
t
−
1
e
−
μ
z
−
ε
z
,
t
I
t
=
I
t
−
1
ρ
i
(
1
β
e
−
(
1
−
ϕ
g
)
μ
z
Π
g
t
ϕ
g
)
1
−
ρ
i
e
ε
i
,
t
.
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGSb Waa0baaSqaaiaadshaaeaadaWcaaqaaiaaigdaaeaacqaH3oaAaaaa aOGaeyypa0ZaaSaaaeaaceWG3bGbaGaadaWgaaWcbaGaamiDaaqaba GccaWGHbWaaSbaaSqaaiaadshaaeqaaaGcbaGabm4yayaaiaWaaSba aSqaaiaadshaaeqaaaaaaOqaamaalaaabaGaamyyamaaBaaaleaaca WG0baabeaaaOqaaiqadogagaacamaaBaaaleaacaWG0baabeaaaaGc cqGH9aqpcqaHYoGyieaacaWFjbGaa8xramaaBaaaleaacaWG0baabe aakmaabmaabaWaaSaaaeaacaWGHbWaaSbaaSqaaiaadshacqGHRaWk caaIXaaabeaaaOqaaiqadogagaacamaaBaaaleaacaWG0bGaey4kaS IaaGymaaqabaaaaOWaaSaaaeaacaaIXaaabaGaeuiOda1aaSbaaSqa aiaadshacqGHRaWkcaaIXaaabeaaaaGccaWGjbWaaSbaaSqaaiaads haaeqaaOGaamyzamaaCaaaleqabaGaeqiVd02aaSbaaWqaaiaadQha aeqaaSGaey4kaSIaeqyTdu2aaSbaaWqaaiaadQhacaGGSaGaamiDai abgUcaRiaaigdaaeqaaaaaaOGaayjkaiaawMcaaaqaamaalaaabaGa bm4yayaaiaWaaSbaaSqaaiaadshaaeqaaaGcbaGaamyyamaaBaaale aacaWG0baabeaakiqadIgagaacamaaBaaaleaacaWG0baabeaaaaGc cqGH9aqpcaaIXaaccaGae4NeI0YaaSaaaeaacaaIXaaabaGaamysam aaBaaaleaacaWG0baabeaaaaaakeaacuqHBoatgaacamaaBaaaleaa caWG0baabeaakiabg2da9maalaaabaGaamyyamaaBaaaleaacaWG0b aabeaaaOqaaiqadogagaacamaaBaaaleaacaWG0baabeaaaaaakeaa ceWGObGbaGaadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcqqHEoawda WgaaWcbaGaamiDaaqabaGcceWGObGbaGaadaWgaaWcbaGaamiDaiab +jHiTiaaigdaaeqaaOWaaSaaaeaacaaIXaaabaGaeuiOda1aaSbaaS qaaiaadshaaeqaaaaakiaadwgadaahaaWcbeqaaiab+jHiTiabeY7a TnaaBaaameaacaWG6baabeaaliab+jHiTiabew7aLnaaBaaameaaca WG6bGaaiilaiaadshaaeqaaaaaaOqaaiaadEgadaWgaaWcbaGaamiD aaqabaGccqGH9aqpdaWcaaqaaiqadogagaacamaaBaaaleaacaWG0b aabeaaaOqaaiqadogagaacamaaBaaaleaacaWG0bGae4NeI0IaaGym aaqabaaaaOGaamyzamaaCaaaleqabaGae4NeI0IaeqiVd02aaSbaaW qaaiaadQhaaeqaaSGae4NeI0IaeqyTdu2aaSbaaWqaaiaadQhacaGG SaGaamiDaaqabaaaaaGcbaGaamysamaaBaaaleaacaWG0baabeaaki abg2da9iaadMeadaqhaaWcbaGaamiDaiab+jHiTiaaigdaaeaacqaH bpGCdaWgaaadbaGaamyAaaqabaaaaOWaaeWaaeaadaWcaaqaaiaaig daaeaacqaHYoGyaaGaamyzamaaCaaaleqabaGae4NeI0YaaeWaaeaa caaIXaGae4NeI0Iaeqy1dy2aaSbaaWqaaiaadEgaaeqaaaWccaGLOa GaayzkaaGaeqiVd02aaSbaaWqaaiaadQhaaeqaaaaakiabfc6aqjaa dEgadaqhaaWcbaGaamiDaaqaaiabew9aMnaaBaaameaacaWGNbaabe aaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacqGFsislcqaH bpGCdaWgaaadbaGaamyAaaqabaaaaOGaamyzamaaCaaaleqabaGaeq yTdu2aaSbaaWqaaiaadMgacaGGSaGaamiDaaqabaaaaOGaaiOlaaaa aa@CFBF@