Skip to content
RDP 2010-01: Reconciling Microeconomic and Macroeconomic Estimates of Price Stickiness
Equation
1
=
θ
j
Π
j
,
t
ε
−
1
+
(
1
−
θ
j
)
(
r
j
,
t
(
k
)
∗
)
1
−
ε
r
j
,
t
(
k
)
∗
=
ε
ε
−
1
E
t
∑
n
=
0
∞
(
β
θ
j
)
n
Λ
˜
t
+
n
Π
t
,
t
+
n
ω
j
,
t
+
n
Π
j
,
t
,
t
+
n
1
+
ε
y
¯
˜
j
,
t
+
n
E
t
∑
n
=
0
∞
(
β
θ
j
)
n
Λ
˜
t
+
n
Π
t
,
t
+
n
Π
j
,
t
,
t
+
n
ε
y
¯
˜
j
,
t
+
n
r
j
,
t
=
r
j
,
t
−
1
Π
j
,
t
Π
t
(
r
j
,
t
+
)
−
ε
=
θ
j
(
r
^
j
,
t
−
1
+
1
Π
t
)
−
ε
+
(
1
−
θ
j
)
(
r
j
,
t
(
k
)
∗
r
j
,
t
)
−
ε
,
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIXa Gaeyypa0JaeqiUde3aaSbaaSqaaiaadQgaaeqaaOGaeuiOda1aa0ba aSqaaiaadQgacaGGSaGaamiDaaqaaiabew7aLHGaaiab=jHiTiaaig daaaGccqGHRaWkdaqadaqaaiaaigdacqWFsislcqaH4oqCdaWgaaWc baGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadkhadaWgaa WcbaGaamOAaiaacYcacaWG0baabeaakmaabmaabaGaam4AaaGaayjk aiaawMcaamaaCaaaleqabaGaey4fIOcaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIXaGae8NeI0IaeqyTdugaaaGcbaGaamOCamaaBaaa leaacaWGQbGaaiilaiaadshaaeqaaOWaaeWaaeaacaWGRbaacaGLOa GaayzkaaWaaWbaaSqabeaacqGHxiIkaaGccqGH9aqpdaWcaaqaaiab ew7aLbqaaiabew7aLjab=jHiTiaaigdaaaWaaSaaaeaaieaacaGFjb Gaa4xramaaqadabaWaaeWaaeaacqaHYoGycqaH4oqCdaWgaaWcbaGa amOAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6gaaaaaba GaamOBaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakmaalaaa baGafu4MdWKbaGaadaWgaaWcbaGaamiDaiabgUcaRiaad6gaaeqaaa GcbaGaeuiOda1aaSbaaSqaaiaadshacaGGSaGaamiDaiabgUcaRiaa d6gaaeqaaaaakiabeM8a3naaBaaaleaacaWGQbGaaiilaiaadshacq GHRaWkcaWGUbaabeaakiabfc6aqnaaDaaaleaacaWGQbGaaiilaiaa dshacaGGSaGaamiDaiabgUcaRiaad6gaaeaacaaIXaGaey4kaSIaeq yTdugaaOGabmyEayaaryaaiaWaaSbaaSqaaiaadQgacaGGSaGaamiD aiabgUcaRiaad6gaaeqaaaGcbaGaa4xsaiaa+veadaWgaaWcbaGaam iDaaqabaGcdaaeWaqaamaabmaabaGaeqOSdiMaeqiUde3aaSbaaSqa aiaadQgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbaaaa qaaiaad6gacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGcdaWc aaqaaiqbfU5amzaaiaWaaSbaaSqaaiaadshacqGHRaWkcaWGUbaabe aaaOqaaiabfc6aqnaaBaaaleaacaWG0bGaaiilaiaadshacqGHRaWk caWGUbaabeaaaaGccqqHGoaudaqhaaWcbaGaamOAaiaacYcacaWG0b GaaiilaiaadshacqGHRaWkcaWGUbaabaGaeqyTdugaaOGabmyEayaa ryaaiaWaaSbaaSqaaiaadQgacaGGSaGaamiDaiabgUcaRiaad6gaae qaaaaaaOqaaiaadkhadaWgaaWcbaGaamOAaiaacYcacaWG0baabeaa kiabg2da9iaadkhadaWgaaWcbaGaamOAaiaacYcacaWG0bGae8NeI0 Iae8xmaedabeaakmaalaaabaGaeuiOda1aaSbaaSqaaiaadQgacaGG SaGaamiDaaqabaaakeaacqqHGoaudaWgaaWcbaGaamiDaaqabaaaaa GcbaWaaeWaaeaacaWGYbWaa0baaSqaaiaadQgacaGGSaGaamiDaaqa aiabgUcaRaaaaOGaayjkaiaawMcaamaaCaaaleqabaGae8NeI0Iaeq yTdugaaOGaeyypa0JaeqiUde3aaSbaaSqaaiaadQgaaeqaaOWaaeWa aeaaceWGYbGbaKaadaqhaaWcbaGaamOAaiaacYcacaWG0bGae8NeI0 IaaGymaaqaaiabgUcaRaaakmaalaaabaGaaGymaaqaaiabfc6aqnaa BaaaleaacaWG0baabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaai ab=jHiTiabew7aLbaakiabgUcaRmaabmaabaGaaGymaiab=jHiTiab eI7aXnaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaaba GaamOCamaaBaaaleaacaWGQbGaaiilaiaadshaaeqaaOWaaeWaaeaa caWGRbaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHxiIkaaGccaWGYb WaaSbaaSqaamaaBaaameaacaWGQbGaaiilaiaadshaaeqaaaWcbeaa aOGaayjkaiaawMcaamaaCaaaleqabaGae8NeI0IaeqyTdugaaOGaai ilaaaaaa@0192@