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Abstract

Standard solution methods for linearised models with rational expectations take
the structural parameters to be constant. These solutions are fundamental for
likelihood-based estimation of such models. Regime changes, such as those
associated with either changed rules for economic policy or changes in the
technology of production, can generate large changes in the statistical properties
of observable variables. In practice, the impact of structural change on estimation
is often addressed by selecting a sub-sample of the data for which a time-invariant
structure seems valid. In this paper we develop solutions for linearised models
in the presence of structural changes using a variety of assumptions relating to
agents’ beliefs when forming expectations, and whether the structural changes
are known in advance. The solutions can be put into state space form and the
Kalman filter used for constructing the likelihood function. Structural changes
and varying beliefs trigger movements in the reduced-form coefficients and hence
model variables follow a time-varying coefficient VAR. We apply the techniques to
two examples: a disinflation program and a transitory slowdown in trend growth.
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Estimation and Solution of Models with Expectations and
Structural Changes

Mariano Kulish and Adrian Pagan

1. Introduction

Standard solution methods for linear rational expectations models, like Blanchard
and Kahn (1980), Binder and Pesaran (1995), Uhlig (1995), King and
Watson (1998), Klein (2000), Sims (2002) and Anderson (2010), deal with the
case where the parameters of the structural model are constant. These methods
are at the heart of likelihood-based estimation of such models. In practice,
the magnitude of changes in the properties of observable variables is used to
help define sub-samples for which a time-invariant structure seems valid, and
estimation is then done with these sub-samples.1 The analysis of Lubik and
Schorfheide (2004), for instance, is based on the assumption that the target
inflation rate in the United States – like other structural parameters – stayed
constant in the pre-Volcker years, but then possibly shifted in the early 1980s,
based on the estimates of steady-state inflation in each of the sub-samples.

Findings of structural instabilities seem to apply to many models of
macroeconomic aggregates. While we cannot do justice to the complete literature,
one can point to the work of Clarida, Galı́ and Gertler (2000) who find a significant
difference in the way monetary policy was conducted pre- and post-late 1979
in the United States; Ireland (2001) who detects shifts in the discount factor;
Inoue and Rossi (2011) who show that the Great Moderation was due to both
changes in shock volatilities and policy and private sector parameters; and Stock
and Watson (2007) who provide evidence of changes in the variance of shocks to
trend inflation.

Our objective in this paper is to develop solutions for linear stochastic models
with model-consistent expectations in the presence of structural changes that are
possibly foreseen. The solution extends one recently proposed by Cagliarini and
Kulish (forthcoming) by providing an econometric representation, namely a state

1 An interesting exception is Cùrdia and Finocchiaro (2005) who estimate a model for Sweden
with a monetary regime change.
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space form, to which the Kalman filter can be applied to construct the likelihood
function of the data. As we show below, the reduced-form solution takes the
form of a time-varying coefficients VAR, where movements in the coefficients
are governed by the nature of the underlying structural changes.

In the basic case we assume that expectations are formed in such a way as to
be consistent with whatever structure (model) holds at each point in the sample.
This is analysed in Section 3 by looking at cases where the structural changes
are either unknown in advance or where there is some foresight about them. In
this scenario a second structure (model) will hold at some given future date and,
because agents know what that date is, they factor it into the formation of their
expectations before the actual date at which the change occurs. Examples of this
latter situation could be a change in inflation targets or an announcement about the
introduction of a tax. Section 3 also deals with the situation where beliefs about
the structural change can be different from the truth (reality). Thus, if one thinks
of a single structural change in the sample, expectations may be based on the first
period model for some time into the second period. Of course, eventually it seems
reasonable to think that beliefs must centre upon the second period model. We
simply specify when beliefs agree with this second model and do not model any
learning behaviour.

The particular case in which the structure evolves and agents’ beliefs are
fully aligned with reality coincides with the problem posed by Cagliarini and
Kulish (forthcoming). The generalisation of this paper involves allowing a
difference between beliefs and reality to exist for a period of time before, after
or during a sequence of structural changes. This generalisation is useful for at
least two reasons. First, it is capable of capturing the consequences of structural
changes that may go temporarily unnoticed as, for example, happened during the
US productivity slowdown of the early 1970s. Second, it may be used to capture
the impact of policy announcements which are less than perfectly credible.

Many of the issues we address have long been recognised in the literature. In
fact, more than half a century ago Marschak (1953) noticed that, in the case of an
anticipated structural change, the purely empirical projections of observed past
regularities into the future would not be a reliable guide for decision-making,
unless past observations were supplemented by some knowledge of the way the
structure was expected to change. Since then the technical apparatus has changed a
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great deal, but these insights are just as powerful today. In the context of estimating
and solving dynamic stochastic models with expectations, some knowledge of the
structural changes that might have taken place in-sample allows us to increase
the number of observations that are usable in estimation, and therefore has the
potential of improving the quality of the estimation. But regardless of what may
be the situation in a particular application, this paper is the first to provide the tools
to accomplish maximum likelihood estimation of dynamic stochastic economies
with structural changes under a variety of assumptions regarding expectations
formation.

The paper is organised as follows. The next section reviews the Binder and
Pesaran (1997) solution procedure for models with forward-looking expectations.
As mentioned previously, Section 3 then extends the solution to situations of
structural change and derives the likelihood for the implied model. Section 4
introduces two examples. The first is an anticipated credible disinflation program
while the second is a temporary fall in trend growth happening alongside a looser
monetary policy. Section 5 concludes and Appendix A provides details of the
construction of the log likelihood with the Kalman filter.

2. Solution of Models with Forward-looking Expectations
and No Structural Changes

Our solution method is a variant of Binder and Pesaran (1997). Following that
paper, a linear rational expectations model of n equations can be written as

A0yt =C0 +A1yt−1 +B0IEtyt+1 +D0εt , (1)

where yt is a n× 1 vector of state and jump variables and εt is a l× 1 vector of
exogenous variables. With no loss of generality we take the latter to be white noise
and to have Il as their covariance matrix. All matrices in Equation (1) conform to
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the specified dimensions.2 The formulation can be generalised as in Binder and
Pesaran (1997) to allow additional lags of yt as well as conditional expectations at
different horizons and from earlier dates.

If it exists and is unique, the solution to Equation (1) will be a VAR of the form

yt =C+Qyt−1 +Gεt . (2)

Given that this is the solution and IEtεt+1 = 0 we must have IEtyt+1 = C +Qyt .

Substituting this into Equation (1) and re-arranging terms produces

yt = (A0−B0Q)−1(C0 +B0C+A1yt−1 +D0εt). (3)

Now (A0−B0Q)−1 = (I−A−1
0 B0Q)−1A−1

0 and defining Γ ≡ A−1
0 C0, A ≡ A−1

0 A1,
B≡ A−1

0 B0 and D≡ A−1
0 D0, Equation (3) becomes

yt = (I−BQ)−1(Γ+BC+Ayt−1 +Dεt).

But this must equal Equation (2), establishing the equivalences

(I−BQ)−1(Γ+BC) = C, (4)
(I−BQ)−1A = Q, (5)
(I−BQ)−1D = G. (6)

Equation (5) implies that
A−Q+BQ2 = 0

and so determines Q. Equation (4) implies that

C = [(I− (I−BQ)−1B]−1(I−BQ)−1
Γ = (I−F)−1

Λ,

2 We may need to make a distinction between the original shocks of a dynamic stochastic model,
et , and the shocks εt in Equation (1). Often et are taken to be serially correlated. This can
be captured by writting such a system in the form of Equation (1) with lagged values of
the endogenous variables included in yt . This means that εt are the innovations to the shock
processes et . There may be a numerical advantage to working with et rather than εt , as that
reduces the dimension of yt and, consequently, all the matrices involved in finding a solution.
But there are conceptual advantages in using the system we work with. Our MATLAB function
that computes the Binder Pesaran solution, ‘smatsbp.m’, does allow us to work with an et that
is described by a VAR process.
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where Λ = (I−BQ)−1
Γ, F = (I−BQ)−1 B. Thus, once Q is found, it is possible

to derive C and G, providing the solution to the model.

3. Solutions with Structural Changes

Before we discuss solutions to the different cases, it is useful to introduce some
notation. First, there is a sample of data running from t = 1,2, ...,T . Second,
we allow for a number of structural changes over the sample period. Hence we
begin by assuming that the first structural change is at Tm and the last is at T ∗m.
Accordingly, the initial model is replaced by a new one at Tm, following which
there may be a sequence of models until T ∗m, when a final model is in place. After
T ∗m no further structural changes are assumed to take place (and we will say that
the structure has converged). Notice that, given these definitions, if there is just a
single structural change then it begins at Tm = T ∗m, since the model after the initial
one is the final model.

Figure 1 illustrates one possibility. The arrows describe the evolution of the
structure. The sequence of structural changes begins in Tm and ends in T ∗m. In
Figure 1, just as in our later examples, Tm and T ∗m take place in-sample, although
nothing about our solutions requires this to be the case. Further, in practice, one
might also have many structural changes in the model parameters (and these could
possibly overlap); it suffices to establish the solutions with a single sequence of
structural changes.
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Figure 1: Timing of Structural Changes
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A formal account of the description above follows. Formally it is being assumed
that before Tm the structure is stable at Equation (1). Then, during t = Tm, ...,T

∗
m−1

the structure evolves as

A0,tyt =C0,t +A1,tyt−1 +B0,tIEtyt+1 +D0,tεt , (7)

subsequently changing over during t = T ∗m, ...,T to

A∗0yt =C∗0 +A∗1yt−1 +B∗0IEtyt+1 +D∗0εt . (8)

Thereafter, there are no further structural changes and Equation (8) holds into the
infinite future.

To be concrete suppose there are two structural changes in the sample.
In the first interval (1 to Tm − 1) there is a model whose coefficients are
θ = {A0,C0,A1,B0,D0}. In the second interval (Tm to T ∗m−1) these change to θ̄ =

{Ā0,C̄0, Ā1, B̄0, D̄0} and in the final interval (T ∗m to T ) to θ
∗ = {A∗0,C

∗
0,A
∗
1,B
∗
0,D

∗
0}.

The notation in Equation (7) allows the parameters A0,t etc to vary according to
the time period but in the two structural change case A0,t = Ā0 etc from Tm to
T ∗m−1 and after that the structure converges to A∗0 etc. In general, when a sequence
of structural changes takes place in-sample, the structural matrices are given by
{{A0,C0,A1,B0,D0}

Tm−1
t=1 ,{A0,t ,C0,t ,A1,t ,B0,t ,D0,t}

T ∗m−1
t=Tm

,{A∗0,C
∗
0,A
∗
1,B
∗
0,D

∗
0}

T
t=T ∗m
}.
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In the first numerical example of Section 4 we will consider a single structural
change as opposed to a sequence of them, and so we will often refer to the interval
t = 1, ...,T ∗m− 1 as the ‘first interval’ and t = T ∗m, ... as the ‘second interval’. The
second of our illustrations in Section 4 refers to two structural changes.

3.1 Regime Shifts with Beliefs Matching Reality

As seen in the solution method for models without structural change, a key element
is to replace the forward expectations with a function that is consistent with the
existing model and the information agents possess. Thus we need to specify how
expectations are to be formed at a point in time and what information is available
to agents at that point. We consider two cases. In the first case we take agents’
beliefs about the prevailing structure to be accurate (i.e. beliefs match reality).
The sequence of structural changes given by Equations (7) and (8) are taken to
be known once they occur. In the second case it is assumed that the sequence of
structural changes given by Equations (7) and (8) is foreseen from Tm. In particular,
from period Tm onwards agents know when all future structural changes occur i.e.
at the time of the first structural change they know exactly when future changes
will take place.3

3.1.1 Structural changes known once they occur

To begin, take the simple case of a single structural change. Up until
Tm−1 = T ∗m−1, agents will assume that the first interval model with coefficients
θ = {A0,B0,...} is going to continue indefinitely. Hence the solution is that for the
no structural change case i.e. yt =C+Qyt−1+Dεt . From T ∗m onwards, agents form
expectations with the final model that has coefficients θ

∗ = {A∗0,B
∗
0, ...} and so the

solution will be yt =C∗+Q∗yt−1+D∗εt . So one simply uses the model that holds
at any point t to compute the solution for yt . Clearly, the solution generalises to
any number of structural changes.

3 It will be obvious from the solution method that we can handle situations where only some of
the future structural changes are known at Tm.
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3.1.2 Foreseen structural changes

Now consider what happens if, after the first structural change, agents know when
all future changes will take place. In this situation expectations need to be formed
which recognise that agents know that different model(s) will hold at some point
in the future. In general, from Tm onwards the solution for yt at any point in time
will be a time-varying VAR of the form

yt =Ct +Qtyt−1 +Gtεt . (9)

Because the information about future structures (models) is taken to be certain and
non-stochastic, it follows that IEtyt+1 =Ct+1+Qt+1yt . Then, following the earlier
solution method, we would get the equivalent conditions to Equations (4) to (6) as

(I−BtQt+1)
−1(Γt +BtCt+1) = Ct (10)

(I−BtQt+1)
−1At = Qt (11)

(I−BtQt+1)
−1Dt = Gt , (12)

where, as before, Γt ≡ A−1
0,t C0,t , At ≡ A−1

0,t A1,t , Bt ≡ A−1
0,t B0,t and Dt ≡ A−1

0,t D0,t .
There are two key differences. One is the second condition which now becomes

At−Qt +BtQt+1Qt = 0, (13)

so that to solve for Qt we need to use a backward recursion. To do so, we start from
the solution of the final structure QT ∗m = Q∗, and choose the sequence {Qt}

T ∗m−1
t=Tm

that satisfies Equation (13). The second difference is the first condition which can
now be written as

Λt +FtCt+1 =Ct

where Λt =
(
I−BtQt+1

)−1
Γt and Ft =

(
I−BtQt+1

)−1 Bt . With Qt in hand it is
possible to solve for Ct through a forward recursion, giving Ct = Λt +FtΛt+1 +

FtFt+1Λt+2 + . . ..

To illustrate, consider the case of two structural changes. From Tm onwards
agents know about any future structural changes. Starting with the final interval
T ∗m, ...,T , since the final model is in place from T ∗m onwards one can apply the no
structural change solution method to get a VAR structure yt =C∗+Q∗yt−1+G∗εt .
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Accordingly, this applies to the last interval and enables us to determine that
QT ∗m = Q∗. At t = T ∗m−1 the second interval model with coefficients θ̄ is in place
but agents know that the final model holds at T ∗m onwards, so they account for
this when forming expectations. Hence one solves for QT ∗m−1 using the backward
recursion in Equation (13) but with At = Ā etc. Before Tm the data are generated
by the initial model with coefficients θ , that is by the first interval VAR structure
yt =C+Qyt−1 +Gεt .

Hence in the interval, t = Tm, . . . ,T
∗

m−1, the solution is a time-varying coefficient
VAR with the movements in its coefficients being pinned down by the way the
structure changes and is expected to change. Notice that the backward recursion
implied by Equation (13) makes Qt a function of Qt+1. This means that the weights
used to form expectations at time t are a function of current and future structures
(models).

3.1.3 Announcement effects

Announcement effects, such as happens with the introduction of a goods and
services tax (GST), the formation of a common currency, etc, can be captured
in the set-up above. If there is a single regime shift which is known in advance
of when it occurs then the initial model would hold for t = 1, ...,T ∗m− 1 and the
final model from t = T ∗m, ...,T . The date of the break, T ∗m, is the time when the final
model is in place. However, agents may now learn about the forthcoming change
at, say, Ta. We would choose the sequence {Qt}

T ∗m−1
t=Ta

starting from QT ∗m = Q∗

as before, such that A−Qt + BQt+1Qt = 0. Although for t = Ta, . . . ,T
∗

m − 1,
the structure remains constant (i.e A0,t = A0,C0,t = C0, etc), the announcement
itself triggers a drift in the reduced form. In fact, between the announcement
date, Ta, and the implementation date, Tm = T ∗m, the reduced form drifts from the
first interval VAR structure yt = C+Qyt−1 +Gεt towards the final interval VAR
structure, yt =C∗+Q∗yt−1 +G∗εt .

3.2 Regime Shifts Where Beliefs are Different from Reality

In the analysis above, beliefs agree with reality. When the structural changes
are unknown until they occur, expectations are formed at each point in time
using the model that pertains to that period of time. When agents foresee the
structural changes, and the structural changes do take place, they know both the
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new and old models and therefore form expectations by weighting the information
appropriately at each point in time. In this section we deal with the more general
case in which this may not always be true. In doing so we assume agents do
eventually use the correct model but there may be a period of time in which they
are mistaken about which structure (model) holds. Hence, during that interval,
they may form incorrect expectations: expectations are model consistent, but
consistency may be with the wrong model for part of the sample period.

We introduce notation for the timing of beliefs. We denote by Tb the time when
agents update their beliefs about current and future structures and by T ∗b the time
when beliefs agree with the final structure. We impose no restrictions between
Tm and T ∗m on one hand and Tb and T ∗b on the other, so that beliefs may converge
before or after the structure has converged and they may be updated before or after
the first structural change.

One possibility is illustrated in Figure 2. The lower arrows describe, as before,
the evolution of the structure while the upper arrows now describe the evolution
of beliefs. The sequence of structural changes begins in Tm and ends in T ∗m, with
beliefs being based on the wrong structure (model) for some time. Beliefs are first
updated in period Tb, after the structural changes begin, and converge in period
T ∗b , after the structure has converged.

This generalisation allows us to consider situations in which agents do not get the
timing of the structural changes right, as well as capturing situations of imperfect
credibility in which policy announcements may be carried out as announced, but
are not necessarily fully incorporated into expectations formation.
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Figure 2: Timing of Structural Changes and Beliefs
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We assume the structure evolves as before: that is, before Tm the structure is
stable at Equation (1). Then, during t = Tm, ...,T

∗
m−1, the structure evolves as in

Equation (7), subsequently changing for t ≥ T ∗m to Equation (8). Agents’ beliefs,
however, may evolve differently. Before Tb, expectations are based on Equation (1)
while after Tb agents believe that the structural coefficients will evolve as follows:{

Ã0,t C̃0,t Ã1,t B̃0,t D̃0,t
}T ∗b −1

t=Tb
. (14)

Subsequently beliefs change for t = T ∗b , ...,T to Equation (8), the final structure.
Equation (14) indicates that, in the period up to T ∗b , agents may have inaccurate
beliefs about which model is generating the data. In the special case that A0,t = Ã0,t
etc, Tm = Tb and T ∗m = T ∗b beliefs are always accurate and the situation coincides
with the one discussed in Section 3.1.2.

In terms of our single structural change example, the period up to T ∗b may have
a period of time over which the initial model holds and a further period in which
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the final model holds. From max(T ∗b ,T
∗

m) onwards it is only the final model that
generates the data.

Given this departure from the standard rational expectations context, we assume
agents combine observed outcomes with their beliefs about the structure to
compute the time t conditional expectation, ĨEtyt+1, where the notation emphasises
that expectations are based on Equation (14).4 In this case, agents use their
model beliefs to determine weights to be applied to observed data when forming
expectations. When agents believe the structure will evolve as in Equation (14),
one proceeds as before, starting from Q̃T ∗b = Q∗ to find the sequence

{
Q̃t
}T ∗b −1

t=Tb
such that

Ãt− Q̃t + B̃tQ̃t+1Q̃t = 0 (15)

The solution agents would infer for t = Tb, ...,T
∗

b −1 is

yt = C̃t + Q̃tyt−1 + G̃t ε̃t , (16)

which implies that ĨEtyt+1 = C̃t+1 + Q̃t+1yt . However, the actual path of the
economy obeys

A0,tyt =C0,t +A1,tyt−1 +B0,t ĨEtyt+1 +D0,tεt . (17)

Using Equation (16) it is easy to show that the reduced-form VAR is given by

yt = Ĉt + Q̂tyt−1 + Ĝtεt (18)

where

Ĉt =
(
A0,t−B0,tQ̃t+1

)−1 (C0,t +B0,tC̃t+1
)
,

Q̂t =
(
A0,t−B0,tQ̃t+1

)−1 A1,t ,

Ĝt =
(
A0,t−B0,tQ̃t+1

)−1 D0,t .

4 One could alternatively assume that agents utilise their beliefs about the model to produce both
the weights and values for the endogenous variables themselves when computing expectations,
i.e. they project a model consistent path for the endogenous variables which will be incorrect if
model beliefs are incorrect. There are other reasonable assumptions as well. For example, we
could assume that either only lagged outcomes are observed or that only some subset of the
variables are observed at time t. These extensions are left for further research.
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The solution in this case also takes the form of a time-varying coefficient VAR
with movements in its coefficients being pinned down by the way the structure
evolves as well as agents’ beliefs about these structural changes.

When the structural changes begin before agents first update their beliefs (i.e.
Tm < Tb) as is the case in Figure 2, expectations are based on the initial structure in
those periods, that is ĨEtyt+1 =C+Qyt , so the economy in those periods follows

A0,tyt =C0,t +A1,tyt−1 +B0,t(C+Qyt)+D0,tεt .

With ĨEtyt+1 = C̃t+1 + Q̃t+1yt in hand, other cases, Tm > Tb or T ∗m > T ∗b , are
straightforward to compute.

3.3 The Likelihood

As we have discussed above, a set of structural changes and assumptions about
beliefs and expectations formation map into a sequence of reduced-form matrices.
If the structural changes are unknown until they occur, the solution is computed
as in Section 3.1.1. If the structural changes are foreseen, the system follows
Equation (9), and in the more general formulation where beliefs may differ from
reality, the system follows Equation (18). The derivation of the likelihood is
identical in each case since each involves a reduced form. Therefore, with no loss
of generality, let the reduced form be given by Equation (9):

yt =Ct +Qtyt−1 +Gtεt .

Now assume that we have in hand a sample of data, {zt}
T
t=1, where zt is a nz× 1

vector of observable variables that relate to the model’s variables by

zt = Hyt + vt . (19)

In Equation (19), vt is an iid measurement error with IE(vt) = 0 and IE
(
vtv
′
t
)
=V .

The observation equation, Equation (19), and the state equation, Equation (9),
constitute a state space model. Therefore, the Kalman filter can be used to
construct the likelihood function for the sample {zt}

T
t=1, as outlined, for example,

in Harvey (1989). Appendix A provides details of the derivation of the log-
likelihood in Equation (20).
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L =−
(

nzT
2

)
ln(2π)− 1

2

T∑
t=1

lndet
(

HΣ
t|t−1

H ′+V
)

− 1
2

T∑
t=1

u′t
(

HΣ
t|t−1

H ′+V
)−1

ut

(20)

In Equation (20), ut = zt− IEt−1zt is the prediction error,

Σ
t|t−1

= IEt−1([yt− IEt−1yt ][yt− IEt−1yt ]
′)

is the covariance matrix of the state variables yt conditional on information at t−1,
and covt−1(zt) = HΣ

t|t−1
H ′+V .

With Equation (20) in hand, standard likelihood-based tests for parameter stability
and detection of date breaks are available.5

4. Numerical Examples

4.1 A Credible Disinflation

In this example there is a credible disinflation in the context of the standard New
Keynesian model described below in Equations (21)–(27). 6

xt = (r−π)− (rt− IEtπt+1)+ IEtxt+1 +(1−ω)(1−ρa)at (21)
πt = π +β

(
IEtπt+1−π

)
+ψxt− et (22)

rt = r+ρr
(
rt−1− r

)
+ρπ (πt−π)+ρg (gt−g)+ρxxt + εr,t (23)

xt = ŷt−ωat (24)
gt = g+ ŷt− ŷt−1 + εz,t (25)

5 Under the null hypothesis of no structural change the likelihood ratio statistic, 2(L (θ̂U)−
L (θ̂R)), is asymptotically distributed as a chi-square random variable with m = dim(θ̂U)−
dim(θ̂R) degrees of freedom, where θ̂U is the unrestricted maximum likelihood estimate of
the vector of structural parameters and θ̂R is the restricted maximum likelihood estimate of the
vector of structural parameters after imposing the restrictions of no structural change. Detection
of structural change is generally done with a recursive likelihood ratio test.

6 See Ireland (2004) for more details.



15

at = ρaat−1 + εa,t (26)
et = ρeet−1 + εe,t (27)

In the equations above, xt is the output gap defined as the deviation of output
from a socially efficient level of output; πt is the gross rate of inflation, that
is ln(pt/pt−1); rt is the log of the gross nominal interest rate; gt is the growth
rate of output; ŷt is the percentage deviation from steady state of the log of
the stochastically detrended level of output. The log of total factor productivity
follows a unit root with a drift, g. Finally, at is a demand shock, et is a cost-push
shock and εz,t is the shock to total factor productivity. The ε’s are identically and
independently distributed shocks.

We construct a sample of 200 observations from this system with the following
characteristics. First, the initial structure (model 1) shown in Table 1 governs the
system up to period 159. Second, at the beginning of period 140, the monetary
authority announces a disinflation program that involves a lower inflation target
(π = 0.0125) and a more aggressive response to deviations of inflation from this
target (ρr and ρπ increase). The response to deviations of growth from trend
also increase (ρg increases). This new policy will be implemented in period 160.
Finally, there are no further structural changes until the end of the sample
in period 200. Agents believe the announcement and revise their expectations
accordingly. In terms of the sample parameters given earlier, T = 200, Ta = 140
and T ∗m = 160. The parameters of the modified system are then shown in lower
panel of Table 1 while data on the observable variables, rt , πt and gt are shown in
Figure 3.

In estimation, rt , πt , and gt are taken to be observed without noise, that is V = 0.
For our choice of observables, ω is unidentified. Moreover, in practice it is
typically the case that β is not estimated. For these reasons we set these parameters
prior to estimation. The task is then to estimate the values of the remaining
17 parameters,

(
σr,σa,σe,σz,ρr,ρπ ,ρg,ρx,ψ,ρa,ρe,g,π,ρ

′
r,ρ
′
π ,ρ

′
g,π
′).

The results are given in Table 2. The point estimates obtained with the history of
observables in Figure 3 correspond to the MLE column in Table 2. The standard
error of the maximum likelihood estimators are computed using the theoretical
bootstrap with 250 replications. That is, we generate, at the estimated values of
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the parameters, 250 histories for the observables and estimate the parameters each
time.

Table 1: Parameters of the Simulation
Initial structure
σr = 0.0017 σa = 0.0100 σe = 0.0018 σz = 0.0040
ρr = 0.7 ρπ = 0.3 ρg = 0.1 ρx = 0.05
β = 0.9975 ψ = 0.1 ω = 0.1 ρa = 0.85

ρe = 0.85 g = 0.005 π = 0.05 r = π +g− lnβ

Final structure
σr = 0.0017 σa = 0.0100 σe = 0.0018 σz = 0.0040
ρ
′
r = 1.0 ρ

′
π = 0.8 ρ

′
g = 0.3 ρx = 0.05

β = 0.9975 ψ = 0.1 ω = 0.1 ρa = 0.85
ρe = 0.85 g = 0.005 π

′ = 0.0125 r′ = π
′+g− lnβ

Announcement and sample size
T = 200 Ta = 140 T ∗m = 160

Figure 3: Simulated Data
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Table 2: Maximum Likelihood Estimation
Parameter True value MLE Standard error(a)

σr 0.0017 0.0017 0.00060
σa 0.0100 0.0106 0.00487
σe 0.0018 0.0016 0.00220
σz 0.0040 3.0×10−5 0.00331
ρr 0.70 0.7007 0.028
ρπ 0.30 0.2994 0.033
ρg 0.10 0.1001 0.068
ρx 0.05 0.0384 0.079
ψ 0.10 0.0739 1.749
ρa 0.85 0.8195 0.064
ρe 0.85 0.8684 0.072
g 0.0050 0.0048 0.0002
π 0.050 0.0501 0.0047
ρ
′
r 1.00 1.2964 0.214

ρ
′
π 0.80 0.8924 0.1704

ρ
′
g 0.30 0.3485 0.1038

π
′ 0.0125 0.0122 0.0005

L 2 449.62 2 507.24 38.12
Note: (a) Based on 250 replications

There are three distinct sub-samples in the data. The first 139 observations are
constructed using the initial structure (model 1), the last 41 observations are found
using the final structure (model 2), and the observations during the transition
period – 140 to 159 – involve using both model 1 and model 2 weights when
forming expectations. The model parameters that change are those of the monetary
policy rule, including the target rate of inflation. As one would expect, because
there are more observations generated from the initial structure, the parameters of
the initial policy rule are estimated more precisely than those of the final structure.
In contrast, because the new policy rule penalises deviations from the new inflation
target more strongly, the final inflation target is estimated more precisely. This
example illustrates an important point – even though there are relatively fewer
observations coming from the final structure, not all of its parameters are estimated
less precisely.

These outcomes are illustrated in Figure 4 which shows distributions of the
estimators of the inflation response for both structures, ρπ and ρ

′
π , and Figure 5

which shows distributions of the estimators of the inflation targets, π and π
′.
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Figure 4: Precision of the Estimates – Inflation Response
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Figure 5: Precision of the Estimates – Inflation Target
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4.2 A Slowdown in Trend Growth

For this example the monetary policy rule, Equation (23), is replaced with

rt = rt−1 +ρπ (πt−πcb)+ρg (gt−gcb)+ εr,t . (28)

This specification makes a distinction between the inflation target of the central
bank and its estimate of trend growth, πcb and gcb, and those of the private sector,
π and g. For the initial and final structures these are the same, that is πcb = π and
gcb = g. At Tm = 32 there is a structural change: g falls to g′ and πcb increases
to π

′
cb. There is another structural change at T ∗m = 64 when the parameters revert

back to their original values. Unlike the example above, in the period running from
Tm = 32 to T ∗m = 64, expectations are (incorrectly) based on the first model. The
reduced-form therefore follows Equation (18). The parameters of this simulation
are summarised in Table 3 along with the steady state real interest rate for both
structures, rr.

Table 3: Parameters of the Simulation
Initial and final structures
σr = 0.001 σa = 0.0100 σe = 0.0030
ρr = 1.0 ρπ = 0.3 ρg = 0.2
β = 0.9975 ψ = 0.1 ω = 0.1

ρe = 0.85 g = 0.006 π = 0.00625
σz = 0.0080 gcb = 0.006 πcb = 0.00625
rr = 400(g− lnβ ) = 3.4 ρa = 0.85
Temporary structure
σr = 0.001 σa = 0.0100 σe = 0.0030
ρr = 1.0 ρπ = 0.3 ρg = 0.2
β = 0.9975 ψ = 0.1 ω = 0.1

ρe = 0.85 g′ = 0.0015 π = 0.00625
σz = 0.0080 gcb = 0.0060 π

′
cb = 0.02500

rr′ 400(g′− lnβ ) = 1.6 ρa = 0.85
Timing of breaks and sample size
T = 160 Tm = 32 T ∗m = 64

While the temporary structure is in place trend growth falls. However, the central
bank’s view of trend growth does not. At the same time, the central bank runs
looser monetary policy in an attempt to offset weaker growth outcomes. This
is captured by an increase in the central bank’s inflation target to π

′
cb. Agents’
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beliefs are never updated and are based on the initial (and final) structure. So in
this example, Ã0,t = A0 = A∗0, etc and A0,t = Ā0, etc. It is therefore unnecessary to
specify Tb and T ∗b . The reduced form therefore follows Equation (18).

The results are given in Table 4. The point estimates associated with the history
of observables shown in Figure 6 correspond to the MLE column in Table 4.
The standard error of the maximum likelihood estimator is, as before, computed
using the theoretical bootstrap with 250 replications. Figure 6 shows also the
non-stochastic path of the simulation which corresponds to the path the economy
would have experienced in the presence of structural changes but in the absence
of random shocks.

Table 4: Maximum Likelihood Estimation
Parameter True value MLE Standard error(a)

σr 0.001 0.0011 0.0002
σa 0.010 0.0097 0.0030
σe 0.003 0.0034 0.0017
σz 0.008 1.4×10−5 0.0038
ρr 1.0 1.0166 0.0702
ρπ 0.3 0.3221 0.0569
ρg 0.2 0.2111 0.0344
ψ 0.10 0.1022 0.5059
ρa 0.85 0.8166 0.0647
ρe 0.85 0.8182 0.0826
g 0.0060 0.0054 0.0005
π 0.00625 0.0069 0.0005
g′ 0.0015 1.9×10−8 0.0003
π
′
cb 0.0125 0.0254 0.0008

L 2 109.95 2 115.63 17.82
Note: (a) Based on 250 replications
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Figure 6: Observable Data for Estimation
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5. Conclusion

In this paper we develop a solution for linear models in which agents use model-
consistent expectations but their beliefs about the structure may or may not be
consistent with the correct model of the economy, at least for a period of time.
The solution in each case takes the form of a time-varying coefficient VAR. This
can be put into a state space form and the Kalman filter can be used to construct
the likelihood.

In the case of an anticipated structural change, standard estimation methods with
observed past regularities would not be a reliable guide, unless the estimation is
supplemented by some knowledge of the way the structure was expected to evolve.
As we have shown through numerical examples, knowledge of any in-sample
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structural changes that have taken place can increase the number of observations
which are usable and can therefore substantially improve the quality of estimation.
Even credible announcements of structural changes that take place out-of-sample
would serve to improve the estimates.
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Appendix A: The Kalman Filter Equations

Take the state equation
yt =Ct +Qtyt−1 +Gtεt

and the observation equation
zt = Hyt + vt .

Define IE
(
εtε
′
t
)
= Ω, IE

(
vtv
′
t
)
=V and

ẑt|t− j = IE
(
zt
∣∣zt− j, . . . ,z1

)
ŷt|t− j = IE

(
yt
∣∣zt− j, . . . ,z1

)
Σ

t|t− j
= IE

(
yt− ŷt|t− j

)(
yt− ŷt|t− j

)′
.

The recursion begins from ŷ1|0 with the unconditional mean of y1, in our case

IE(y1) = µ

where µ is the steady state under the initial structure, that is µ = (I−Q)−1C and

Σ
1|0

= IE(y1−µ)(y1−µ)′

implies vec(Σ
1|0
) = (I−Q⊗Q)−1 vec(GΩG′). Presuming that ŷt|t−1 and Σ

t|t−1
are

in hand then
ẑt|t−1 = Hŷt|t−1 ,

and the forecast error will be

ut = zt− ẑt|t−1 = H
(

yt− ŷt|t−1

)
+ vt .

The latter implies that
IE
(
utu
′
t
)
= HΣ

t|t−1
H ′+V.
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Next, update the inference on the value of yt with data up to t as in
Hamilton (1994):

ŷt|t = ŷt|t−1

+

[
IE
(

yt− ŷt|t−1

)(
zt− ẑt|t−1

)′][
IE
(

zt− ẑt|t−1

)(
zt− ẑt|t−1

)′]−1

ut

= ŷt|t−1 +Σ
t|t−1

H ′
(

HΣ
t|t−1

H ′+V
)−1

ut .

This follows from

IE
(

yt− ŷt|t−1

)(
zt− ẑt|t−1

)′
= IE

(
yt− ŷt|t−1

)(
H
(

yt− ŷt|t−1

)
+ vt

)′
= Σ

t|t−1
H ′,

after using IE
(

vt

(
yt− ŷt|t−1

)′)
= 0. Equation (9) then implies

ŷt+1|t =Ct+1 +Qt+1ŷt|t−1 +Ktut ,

where Kt = Qt+1Σ
t|t−1

H ′
(

HΣ
t|t−1

H ′+V
)−1

is the Kalman gain matrix.

This last expression, combined with Equation (9), implies that

yt+1− ŷt+1|t = Ct+1 +Qt+1yt +Gt+1εt+1

−
(

Ct+1 +Qt+1ŷt|t−1 +Qt+1Σ
t|t−1

H ′
(

HΣ
t|t−1

H ′+V
)−1

ut

)
= Qt+1

(
yt− ŷt|t−1

)
+Gt+1εt+1 (A1)

−Qt+1Σ
t|t−1

H ′
(

HΣ
t|t−1

H ′+V
)−1

ut

The associated recursions for the mean squared error (MSE) matrices are given
by,

Σ
t+1|t

= Gt+1ΩG′t+1 +Qt+1

(
Σ

t|t−1
−Σ

t|t−1
H ′
(

HΣ
t|t−1

H ′+V
)−1

HΣ
t|t−1

)
Q′t+1.
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If the initial state and the innovations are Gaussian, the conditional distribution
of zt is normal with mean Hŷt|t−1 and conditional variance HΣ

t|t−1
H ′+V . The

forecast errors, ut , can then be used to construct the log likelihood function for the
sample {zt}

T
t=1 as follows:

L = −
(

nzT
2

)
ln(2π)− 1

2

T∑
t=1

lndet
(

HΣ
t|t−1

H ′+V
)

− 1
2

T∑
t=1

u′t
(

HΣ
t|t−1

H ′+V
)−1

ut .

This is Equation (20) in the text.
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