Skip to content
RDP2013-08: International Business Cycles with Complete Markets
Equation
Λ
1
(
s
t
)
=
Λ
2
(
s
t
)
,
Λ
j
(
s
t
)
=
β
E
t
[
Λ
j
(
s
t
)
R
j
(
s
t
)
]
,
Λ
j
(
s
t
)
=
(
c
j
(
s
t
)
−
b
h
j
(
s
t
−
1
)
−
χ
n
j
(
s
t
)
t
−
η
t
−
η
)
−
σ
−
b
β
E
t
[
(
c
j
(
s
t
+
1
)
−
b
h
j
(
s
t
)
−
χ
n
j
(
s
t
+
1
)
t
−
η
t
−
η
)
−
σ
]
,
Λ
j
(
s
t
)
χ
n
j
(
s
t
)
η
(
c
j
(
s
t
)
−
b
h
j
(
s
t
−
1
)
−
χ
n
j
(
s
t
)
t
+
η
t
−
η
)
−
σ
=
1
(
1
−
α
)
z
j
(
s
t
)
k
j
(
s
t
−
1
)
α
n
j
(
s
t
)
−
α
,
R
t
+
1
=
a
1
(
i
j
(
s
t
)
k
j
(
s
t
−
1
)
)
−
1
/
ξ
×
[
α
y
j
(
s
t
+
1
)
k
j
(
s
t
)
+
(
i
j
(
s
t
+
1
)
k
j
(
s
t
)
)
1
/
ξ
(
1
−
δ
+
a
2
a
1
+
1
ξ
−
1
(
i
j
(
s
t
+
1
)
k
j
(
s
t
)
)
1
−
1
/
ξ
)
]
,
c
1
(
s
t
)
+
c
2
(
s
t
)
+
i
1
(
s
t
)
+
i
2
(
s
t
)
=
y
1
(
s
t
)
+
y
2
(
s
t
)
.
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaamAraaiabfU5amnaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaiabg2da9iabfU5amnaaBaaaleaacaaIYaaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaiaacYcaaeaacqqHBoatdaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaacqGH9aqpcqaHYoGycaWGfbWaaSbaaSqaaiaadshaaeqaaOWaamWaaeaacqqHBoatdaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaacaWGsbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiilaaqaaiabfU5amnaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaam4yamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaiabgkHiTiaadkgacaWGObWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0bGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiabgkHiTiabeE8aJnaalaaabaGaamOBamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamiDaiabgkHiTiabeE7aObaaaOqaaiaadshacqGHsislcqaH3oaAaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcqaHdpWCaaaakeaacqGHsislcaWGIbGaeqOSdiMaamyramaaBaaaleaacaWG0baabeaakmaadmaabaWaaeWaaeaacaWGJbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0bGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiabgkHiTiaadkgacaWGObWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGccaGLOaGaayzkaaGaeyOeI0Iaeq4Xdm2aaSaaaeaacaWGUbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0bGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamiDaiabgkHiTiabeE7aObaaaOqaaiaadshacqGHsislcqaH3oaAaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcqaHdpWCaaaakiaawUfacaGLDbaacaGGSaaabaWaaSaaaeaacqqHBoatdaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaaaeaacqaHhpWycaWGUbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqaH3oaAaaGcdaqadaqaaiaadogadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaacqGHsislcaWGIbGaamiAamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacqGHsislcqaHhpWydaWcaaqaaiaad6gadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadshacqGHRaWkcqaH3oaAaaaakeaacaWG0bGaeyOeI0Iaeq4TdGgaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Iaeq4Wdmhaaaaakiabg2da9maalaaabaGaaGymaaqaamaabmaabaGaaGymaiabgkHiTiabeg7aHbGaayjkaiaawMcaaiaadQhadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaacaWGRbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0bGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeqySdegaaOGaamOBamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaeqySdegaaaaakiaacYcaaeaacaWGsbWaaSbaaSqaaiaadshacqGHRaWkcaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGymaaqabaGcdaqadaqaamaalaaabaGaamyAamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaaqaaiaadUgadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacqaH+oaEaaGccqGHxdaTdaWadaqaaiabeg7aHnaalaaabaGaamyEamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaeaacaWGRbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGccaGLOaGaayzkaaaaaiabgUcaRmaabmaabaWaaSaaaeaacaWGPbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0bGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaaqaaiaadUgadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiabe67a4baakmaabmaabaWaaSaaaeaacaaIXaGaeyOeI0IaeqiTdqMaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeqOVdGNaeyOeI0IaaGymaaaadaqadaqaamaalaaabaGaamyAamaaBaaaleaacaWGQbaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaeaacaWGRbWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiabgkHiTiaaigdacaGGVaGaeqOVdGhaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiilaaqaaiaadogadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGccaGLOaGaayzkaaGaey4kaSIaamyAamaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaiabgUcaRiaadMgadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadohadaahaaWcbeqaaiaadshaaaaakiaawIcacaGLPaaacqGH9aqpcaWG5bWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbWaaWbaaSqabeaacaWG0baaaaGccaGLOaGaayzkaaGaey4kaSIaamyEamaaBaaaleaacaaIYaaabeaakmaabmaabaGaam4CamaaCaaaleqabaGaamiDaaaaaOGaayjkaiaawMcaaiaac6caaaaa@90D9@