Skip to content
RDP 2014-09: Predicting Dwelling Prices with Consideration of the Sales Mechanism
Equation
B
o
(
ν
i
t
a
)
=
(
ψ
a
t
+
γ
a
t
)
ν
i
t
a
B
1
(
s
n
a
t
:
n
a
t
,
ν
i
t
a
)
=
γ
a
t
n
a
t
−
1
s
n
a
t
:
n
a
t
a
+
(
ψ
a
t
+
(
n
a
t
−
2
)
γ
a
t
n
a
t
−
1
)
ν
i
t
a
B
2
(
s
n
a
t
:
n
a
t
a
,
s
n
a
t
a
−
1
:
n
a
t
,
ν
i
t
a
)
=
γ
a
t
n
a
t
−
1
(
s
n
a
t
:
n
a
t
a
+
s
n
a
t
−
1
:
n
a
t
a
)
+
(
ψ
a
t
+
(
n
a
t
−
3
)
γ
a
t
n
a
t
−
1
)
ν
i
t
a
⋮
B
n
a
t
−
2
(
s
n
a
t
:
n
a
t
a
,
…
,
s
2
:
n
a
t
a
,
ν
i
t
a
)
=
γ
a
t
n
a
t
−
1
∑
j
=
3
n
a
t
s
j
:
n
a
t
a
+
(
ψ
a
t
+
γ
a
t
n
a
t
−
1
)
ν
i
t
a
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeWabuqaaa aabaGaamOqamaaBaaaleaacaWGVbaabeaakmaabmaabaGaeqyVd42a a0baaSqaaiaadMgacaWG0baabaGaamyyaaaaaOGaayjkaiaawMcaai abg2da9maabmaabaGaeqiYdK3aaSbaaSqaaiaadggacaWG0baabeaa kiabgUcaRiabeo7aNnaaBaaaleaacaWGHbGaamiDaaqabaaakiaawI cacaGLPaaacqaH9oGBdaqhaaWcbaGaamyAaiaadshaaeaacaWGHbaa aaGcbaGaamOqamaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4Cam aaBaaaleaacaWGUbWaaSbaaWqaaiaadggacaWG0baabeaaliaacQda caWGUbWaaSbaaWqaaiaadggacaWG0baabeaaaSqabaGccaGGSaGaeq yVd42aa0baaSqaaiaadMgacaWG0baabaGaamyyaaaaaOGaayjkaiaa wMcaaiabg2da9maalaaabaGaeq4SdC2aaSbaaSqaaiaadggacaWG0b aabeaaaOqaaiaad6gadaWgaaWcbaGaamyyaiaadshaaeqaaOGaeyOe I0IaaGymaaaacaWGZbWaa0baaSqaaiaad6gadaWgaaadbaGaamyyai aadshaaeqaaSGaaiOoaiaad6gadaWgaaadbaGaamyyaiaadshaaeqa aaWcbaGaamyyaaaakiabgUcaRmaabmaabaGaeqiYdK3aaSbaaSqaai aadggacaWG0baabeaakiabgUcaRmaalaaabaWaaeWaaeaacaWGUbWa aSbaaSqaaiaadggacaWG0baabeaakiabgkHiTiaaikdaaiaawIcaca GLPaaacqaHZoWzdaWgaaWcbaGaamyyaiaadshaaeqaaaGcbaGaamOB amaaBaaaleaacaWGHbGaamiDaaqabaGccqGHsislcaaIXaaaaaGaay jkaiaawMcaaiabe27aUnaaDaaaleaacaWGPbGaamiDaaqaaiaadgga aaaakeaacaWGcbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZb Waa0baaSqaaiaad6gadaWgaaadbaGaamyyaiaadshaaeqaaSGaaiOo aiaad6gadaWgaaadbaGaamyyaiaadshaaeqaaaWcbaGaamyyaaaaki aacYcacaWGZbWaa0baaSqaaiaad6gadaWgaaadbaGaamyyaiaadsha aeqaaaWcbaGaamyyaaaakiabgkHiTiaaigdacaGG6aGaamOBamaaBa aaleaacaWGHbGaamiDaaqabaGccaGGSaGaeqyVd42aa0baaSqaaiaa dMgacaWG0baabaGaamyyaaaaaOGaayjkaiaawMcaaiabg2da9maala aabaGaeq4SdC2aaSbaaSqaaiaadggacaWG0baabeaaaOqaaiaad6ga daWgaaWcbaGaamyyaiaadshaaeqaaOGaeyOeI0IaaGymaaaadaqada qaaiaadohadaqhaaWcbaGaamOBamaaBaaameaacaWGHbGaamiDaaqa baWccaGG6aGaamOBamaaBaaameaacaWGHbGaamiDaaqabaaaleaaca WGHbaaaOGaey4kaSIaam4CamaaDaaaleaacaWGUbWaaSbaaWqaaiaa dggacaWG0baabeaaliabgkHiTiaaigdacaGG6aGaamOBamaaBaaame aacaWGHbGaamiDaaqabaaaleaacaWGHbaaaaGccaGLOaGaayzkaaGa ey4kaSYaaeWaaeaacqaHipqEdaWgaaWcbaGaamyyaiaadshaaeqaaO Gaey4kaSYaaSaaaeaadaqadaqaaiaad6gadaWgaaWcbaGaamyyaiaa dshaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaaiabeo7aNnaaBa aaleaacaWGHbGaamiDaaqabaaakeaacaWGUbWaaSbaaSqaaiaadgga caWG0baabeaakiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaeqyVd4 2aa0baaSqaaiaadMgacaWG0baabaGaamyyaaaaaOqaaiabl6Uinbqa aiaadkeadaWgaaWcbaGaamOBamaaBaaameaacaWGHbGaamiDaaqaba WccqGHsislcaaIYaaabeaakmaabmaabaGaam4CamaaDaaaleaacaWG UbWaaSbaaWqaaiaadggacaWG0baabeaaliaacQdacaWGUbWaaSbaaW qaaiaadggacaWG0baabeaaaSqaaiaadggaaaGccaGGSaGaeSOjGSKa aiilaiaadohadaqhaaWcbaGaaGOmaiaacQdacaWGUbWaaSbaaWqaai aadggacaWG0baabeaaaSqaaiaadggaaaGccaGGSaGaeqyVd42aa0ba aSqaaiaadMgacaWG0baabaGaamyyaaaaaOGaayjkaiaawMcaaiabg2 da9maalaaabaGaeq4SdC2aaSbaaSqaaiaadggacaWG0baabeaaaOqa aiaad6gadaWgaaWcbaGaamyyaiaadshaaeqaaOGaeyOeI0IaaGymaa aadaaeWbqaaiaadohadaqhaaWcbaGaamOAaiaacQdacaWGUbWaaSba aWqaaiaadggacaWG0baabeaaaSqaaiaadggaaaGccqGHRaWkdaqada qaaiabeI8a5naaBaaaleaacaWGHbGaamiDaaqabaGccqGHRaWkdaWc aaqaaiabeo7aNnaaBaaaleaacaWGHbGaamiDaaqabaaakeaacaWGUb WaaSbaaSqaaiaadggacaWG0baabeaakiabgkHiTiaaigdaaaaacaGL OaGaayzkaaGaeqyVd42aa0baaSqaaiaadMgacaWG0baabaGaamyyaa aaaeaacaWGQbGaeyypa0JaaG4maaqaaiaad6gadaWgaaadbaGaamyy aiaadshaaeqaaaqdcqGHris5aaaaaaa@2FC6@