Skip to content
RDP 2015-12: Modelling the Australian Dollar
Equation (9)
Δ
R
T
W
I
t
=
μ
+
γ
(
R
T
W
I
t
−
1
+
β
1
F
T
o
T
t
−
1
+
β
2
R
I
R
D
t
−
1
)
+
α
1
Δ
C
R
B
t
+
α
2
Δ
C
R
B
t
−
1
+
α
3
Δ
S
P
X
t
+
α
4
Δ
V
I
X
t
+
α
5
Δ
R
T
W
I
t
−
1
+
α
6
Δ
F
T
o
T
t
+
α
7
Δ
R
I
R
D
t
+
ε
t
.
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHuo arcaWGsbGaamivaiaadEfacaWGjbWaaSbaaSqaaiaadshaaeqaaOGa eyypa0JaeqiVd0Maey4kaSIaeq4SdC2aaeWaaeaacaWGsbGaamivai aadEfacaWGjbWaaSbaaSqaaiaadshacqGHsislcaaIXaaabeaakiab gUcaRiabek7aInaaBaaaleaacaaIXaaabeaakiaadAeacaWGubGaam 4BaiaadsfadaWgaaWcbaGaamiDaiabgkHiTiaaigdaaeqaaOGaey4k aSIaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamOuaiaadMeacaWGsb GaamiramaaBaaaleaacaWG0bGaeyOeI0IaaGymaaqabaaakiaawIca caGLPaaacqGHRaWkcqaHXoqydaWgaaWcbaGaaGymaaqabaGccqqHuo arcaWGdbGaamOuaiaadkeadaWgaaWcbaGaamiDaaqabaGccqGHRaWk cqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqqHuoarcaWGdbGaamOuai aadkeadaWgaaWcbaGaamiDaiabgkHiTiaaigdaaeqaaaGcbaGaey4k aSIaeqySde2aaSbaaSqaaiaaiodaaeqaaOGaeuiLdqKaam4uaiaadc facaWGybWaaSbaaSqaaiaadshaaeqaaOGaey4kaSIaeqySde2aaSba aSqaaiaaisdaaeqaaOGaeuiLdqKaamOvaiaadMeacaWGybWaaSbaaS qaaiaadshaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaiwdaaeqa aOGaeuiLdqKaamOuaiaadsfacaWGxbGaamysamaaBaaaleaacaWG0b GaeyOeI0IaaGymaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGOn aaqabaGccqqHuoarcaWGgbGaamivaiaad+gacaWGubWaaSbaaSqaai aadshaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaiEdaaeqaaOGa euiLdqKaamOuaiaadMeacaWGsbGaamiramaaBaaaleaacaWG0baabe aakiabgUcaRiabew7aLnaaBaaaleaacaWG0baabeaakiaac6caaaaa @A224@