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Abstract 

Interbank repo markets are arguably just as important as unsecured markets. Despite this, the global 

research community has not analysed the microstructure of interbank repo markets in the same 

detail as unsecured markets, because loan-level repo data have not been available. This paper 

provides and assesses an algorithm for extracting loan-level repo data from over-the-counter 

securities transactions data, and applies it to securities transactions data from Austraclear. This 

approach is similar to how loan-level unsecured data are typically obtained from payments data. 

False detection and false omission rates are estimated to be 3 per cent or less. While separate 

prudential data indicate a larger repo market than the algorithm data, likely reflecting repos 

transacted through foreign (i.e. non-Austraclear) infrastructure, the two datasets have a robust 

positive relationship. 

The algorithm data, capturing non-RBA repos of up to 14-days maturity from several 2-month data 

samples between 2006 and 2015, reveal various market features. From 2006 to 2015, the 

distribution of repo-rate spreads (to the cash rate) drifted up and tightened, and the market shifted 

towards overnight maturities. Loan-level repo rates depend on the loan size and the types of 

counterparties, but not how long the repo is open. In 2015, the market’s network structure comprises 

a tightly integrated core, and a segmented periphery with few counterparties. Repo haircuts do not 

display obvious patterns, appearing randomly distributed around zero. 

JEL Classification Numbers: C63, E42, E43, G10 

Keywords: interbank markets, Furfine algorithm, false detection rates, repo markets, securities 
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1. Introduction 

Short-term interbank markets are at the core of most developed financial systems. They are the first 

resort for financial institutions (henceforth loosely termed ‘banks’) wishing to manage the day-to-

day liquidity needs that arise from their business-related cash flows. Moreover, the interest rates 

banks charge each other in these markets have flow-on effects to other interest rates throughout 

the economy. This pivotal role is the reason central banks use these markets for enacting monetary 

policy. The Reserve Bank of Australia (RBA), like many other central banks, targets the rate in the 

unsecured interbank market for overnight loans, termed the ‘cash rate’. 

Another key component of short-term interbank markets, besides the unsecured market, is the repo 

market. Unsecured loans involve movements of cash only, whereas repos (i.e. secured loans) involve 

simultaneous movement of cash and securities. Borrowers provide and receive back securities as 

collateral alongside their receipt and repayment of the cash that they borrow.1 The collateral reduces 

the risk to the lender – if a repo borrower defaults, the lender takes immediate ownership of the 

collateral, whereas if an unsecured borrower defaults, the lender joins other unsecured creditors 

with a claim on the borrower’s assets. To minimise counterparty risk, the RBA uses repos when 

lending to private banks in open market operations (OMO). 

Figure 1 plots available data on overnight interbank (i.e. non-RBA) loans in the Australian unsecured 

and repo markets. These data capture the market segments that are transacted through Australian 

infrastructure and exclude loans rolled over multiple nights. Although initially smaller, this repo 

market segment had grown to outsize the corresponding unsecured market segment by 2015.2 

Similar patterns have occurred in other regions – between 2006 and 2015, unsecured turnover in 

the European money market declined from €14 trillion to €3 trillion, whereas secured turnover 

increased from €21 trillion to €29 trillion (ECB 2015). 

Notwithstanding this, there is little work studying repo market data at the level of individual loans. 

Loan-level data are valuable because, for example, they capture information on the borrower and 

lender for each transaction, potentially revealing whether position changes are supply or demand 

driven. They also have a daily or higher frequency, permitting identification of market reactions to 

shocks. The lack of loan-level analysis is likely due to data availability. Adrian et al (2014) write: 

One conclusion emerging from [our work] is the need to better understand the institutional 

arrangements in [repo and securities lending] markets. 

To that end, we find that existing data sources are incomplete. More comprehensive data collection 

would both deepen our understanding of the repo and [securities] lending markets and facilitate 

monitoring firm-level and systemic risk in these markets. (p 132)3 

                                                      

1 ‘Repo’ is short for ‘repurchase agreement’. A repo is similar to a securities sale paired with a subsequent repurchase. 

2 This figure focuses on the overnight markets because the overnight unsecured market is the target of monetary policy, 

but it does not necessarily represent activity at other maturities. Section 5.1 shows that between 2006 and 2015, 

there was a substantial shift in repo market activity towards overnight maturity. 

3 Securities loans are sometimes referred to as special repos, as opposed to general collateral (GC) repos, and are 

driven by the collateral receiver’s demand for the particular collateral received, for example, to cover a short position 

in those securities. Since they are often collateralised by cash, they can be difficult to distinguish from other repos. 

This paper treats securities loans as a subset of repos 
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This paper provides an algorithm for extracting loan-level data on over-the-counter (OTC) repo 

markets from securities transactions data, which may improve the accessibility of loan-level repo 

data. 

Figure 1: Size of Overnight Repo and Unsecured Markets 

September and October windows 

 

Note: Repo data from algorithm, unsecured data from daily survey of banks 

Sources: ASX; Author’s calculations; RBA 

Loan-level data on unsecured interbank markets are commonly obtained by applying an algorithm 

pioneered by Furfine (1999) on US data that identifies which interbank cash transfers through central 

bank payments systems are interbank loans (the ‘Furfine algorithm’). The Furfine algorithm identifies 

pairs of payments that are consistent with a loan principal transferred in one direction, then a 

principal and interest repayment back the next day. Many subsequent studies have used it to analyse 

unsecured interbank markets at the loan level. Some notable examples are Ashcraft and 

Duffie (2007), analysing the intraday allocation of liquidity in the fed funds market, Afonso, Kovner 

and Schoar (2011), studying daily patterns in US unsecured interbank markets during the global 

financial crisis, and Acharya and Merrouche (2013), analysing UK unsecured interbank markets 

during the crisis. 

Research on repo markets has tended to rely on datasets that are less detailed or of lower frequency. 

For example, Krishnamurthy, Nagel and Orlov (2014) study detailed data at the quarterly frequency, 

obtained from regulatory filings by a large proportion of US repo counterparties, and Gorton and 

Metrick (2012) analyse daily market-wide quotes from US dealers on interest rates and haircuts for 

various collateral types. Data are more readily available for market segments traded through 

centralised infrastructure, although these data have tended to be aggregated or anonymised before 

analysis. Further, OTC markets, which can be large, are omitted, limiting the conclusions that can 

be drawn. Copeland, Martin and Walker (2014) analyse daily data on collateral held against repos 
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through tri-party infrastructure, collected by the Federal Reserve Bank of New York.4 Mancini, 

Ranaldo and Wrampelmeyer (2016) analyse European data with several loan-level details but 

without counterparty information. Fuhrer, Guggenheim and Schumacher (2016) is one of the few 

studies that has analysed loan-level repo data, focusing on the Swiss franc repo market. 

This paper describes an algorithm for extracting loan-level repo data on OTC market segments from 

securities transactions data, and applies the algorithm to conduct a preliminary loan-level analysis 

of the Australian repo market (excluding repos with the RBA). Securities transactions data are 

typically stored by a central securities depository (CSD) that is responsible for maintaining securities 

ownership records. Most CSDs permit securities transactions to involve simultaneous movement of 

cash and securities in opposite directions, via a link to an interbank payments system. Accordingly, 

OTC repos are settled through CSDs alongside other transactions such as secondary market 

purchases (i.e. outright trades). This is comparable to how unsecured loans are transacted through 

centralised payments systems alongside non-loan interbank payments. Analogous to the Furfine 

algorithm, the objective of the algorithm I present (the ‘repo-detection algorithm’) is to separate 

repo-related transactions from securities transactions occurring for other purposes. 

This research is related to the small literature following Furfine (1999) that assesses and constructs 

modifications of the Furfine algorithm (‘Furfine-type algorithms’). Armantier and Copeland (2012) 

and Kovner and Skeie (2013) compare data from the Furfine algorithm with internal data from two 

banks and with regulatory data, respectively. Kuo et al (2013) generalise the Furfine algorithm to 

detect term loans rather than overnight loans. Arciero et al (2016) calibrate, run and assess the 

algorithm using European payments data. Rempel (2016) estimates the Furfine algorithm’s rates of 

false detections, proposing some modifications to improve performance. Brassil, Hughson and 

McManus (2016) appear to be the first to detect loans that comprise more than two transactions 

(‘multiple-transaction loans’), finding their augmentation to noticeably improve detections in the 

Australian unsecured market. 

Like Furfine-type algorithms, the repo-detection algorithm identifies groups of cash movements that 

resemble a loan followed by a repayment with interest. However, Furfine-type algorithms rely on 

the market convention that unsecured loan principals are multiples of, for example, $100 000, which 

is not followed in the Australian repo market. On the other hand, securities transactions data contain 

more information than payments data – most notably the type and quantity of securities transferred. 

By requiring that the securities initially provided as collateral are the same type and quantity as 

those returned, the repo-detection algorithm essentially removes the need to require that loan 

principals are round numbers. In addition, it detects multiple-transaction repos, like Brassil 

et al (2016), although the difference in market conventions across repo and unsecured markets 

necessitates a different approach. 

The repo-detection algorithm is described in more detail in Section 2. It is represented as a set of 

conditions that identify a group of securities transactions as a detected repo. I then describe the 

procedure for applying these conditions to the data. To detect multiple-transaction repos, I 

appropriately adapt the subset sums problem (a well-known exercise in computer science) to the 

requirement that all collateral provided in a repo is subsequently returned. The R code for the 

algorithm, with detailed comments, is available in the online supplementary information. 

                                                      

4 Copeland et al (2012) describe tri-party repo infrastructure in the United States. 
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In Section 3, I run the algorithm on securities transactions data from Austraclear that cover several 

two-month windows of transactions from 2006 to 2015, and assess its performance. Multiple-

transaction repos are common but occur with much lower frequency than two-transaction repos. 

Using placebo tests that can be interpreted as a special case of the approach of Rempel (2016), I 

estimate around 3 per cent of the algorithm detections to be false detections, although excluding 

multiple-transaction repos reduces this to around 1 per cent. To gauge the incidence of repos missed 

by the algorithm (but present in the transactions data), that is, false omissions, I relax some of the 

conditions assumed in Section 2 and find that very few additional repos are detected. 

Readers more interested in the Australian repo market data than the algorithm itself can skip to 

Sections 4 and 5. Section 4 provides context for the analysis in Section 5 by comparing the algorithm 

data with aggregated repo data from the Australian Prudential Regulation Authority (APRA). The 

APRA data imply substantially larger repo positions. There are, however, reasons to expect 

differences. For example, some repo positions reported to APRA are likely transacted through 

international CSDs (ICSDs) located in Europe with offshore counterparties. Observations in the 

algorithm data and APRA data have a robust positive relationship with correlations of around 0.5. 

Section 5 provides a preliminary description of the Australian short-term repo market, that is, of 

14-day maturity or less, as informed by the algorithm data obtained in Section 3. In the 2015 

window, the average total value of repos open each night is around $12 billion, compared to around 

$5 billion in 2006.5 The majority of repos are collateralised by Australian Government securities 

(AGS), although there is little market concentration in particular AGS. In 2006 repos open for one 

week had the largest market share, although by 2015 the market had largely shifted to overnight 

maturities. Repo rates display substantial cross-sectional variation across an interval of around 

50 basis points, and drift upward between 2006 and 2015. For maturities up to 14 days, rates are 

not strongly related to maturity. Larger loans have higher rates. 

In the two-month 2015 window, around half of the repo turnover in the market segment captured 

is between one foreign lender and one Australian borrower. Otherwise, most of the turnover is 

distributed across around 20 Australian and foreign banks and a few Austraclear accounts related to 

banks’ clients. Repo counterparties tend to be either highly integrated within the market, dealing 

with around ten counterparties, or active only in the periphery, dealing only with one or two banks 

from the highly integrated segment. Repo haircuts are scattered around zero, not following any 

obvious patterns. On average, repo settlement activity subsides late in the day when unsecured 

market activity peaks. Longer maturity repos tend to be initiated earlier in the day than shorter 

maturity repos. 

2. The Repo-detection Algorithm 

The algorithm detects groups of securities transactions that appear to comprise a repo, that is, that 

satisfy a set of characteristics that repos are assumed to have. Transactions not in these groups are 

assumed to occur for other reasons. The following information about each transaction is required: 

                                                      

5 Discount securities (i.e. securities without coupon payments such as bank bills) issued by private entities are excluded 

from the data prior to analysis, so these figures do not include any repos collateralised by them. 
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 Settlement time: the day and time the transaction took place.6 

 Counterparties: CSD account IDs for the securities sender and the securities receiver. 

 International securities identification number (ISIN): the type of securities transferred. 

 Face value (FV): the face value of securities transferred. 

 Consideration: the amount of money, if any, transferred in the opposite direction to the securities. 

The key idea is similar to that of the Furfine algorithm, which identifies pairs of payments that are 

consistent with a loan principal transferred in one direction, then a principal and interest repayment 

transferred together in the opposite direction the next day. Furfine-type algorithms rely on the 

unsecured market convention that loans are made in multiples of, for example, $100 000. This 

convention is not, however, followed in the Australian repo market. Nonetheless, by utilising a larger 

set of information, that is, including ISINs and FVs, a repo-detection algorithm can still effectively 

identify repo transactions. Relative to Furfine-type algorithms, the difference in market conventions 

implies that the repo-detection algorithm must treat more transactions as potential loan initiations, 

but the ISIN and FV information reduces the number of subsequent transactions that potentially 

form a repo with any loan-initiation transaction. The net effect is that the computational load remains 

feasible. 

The repo-detection algorithm also detects loans comprising more than two transactions, in contrast 

to most Furfine-type algorithms that only search for payment pairs. Multiple transaction loans occur 

if the lender increases the loan size before it is repaid, or the borrower repays the loan in multiple 

instalments, or there is a collateral top-up or drawdown, or any combination of these happens. Such 

loans would be missed by an algorithm detecting only transaction pairs. Brassil et al (2016) show 

that these multiple-transaction loans occur frequently in the unsecured market. In Section 3.2, I 

show that multiple-transaction repos also occur, but are less common than two-transaction repos. 

2.1 Underlying Assumptions 

The repo-detection algorithm can be characterised as a collection of conditions that maps a set of 

securities transactions into a set of ‘detected repos’. The conditions have three parameters: maturity 

cap, determining the maximum maturity of detected repos, measured in whole days; interest 

bounds, determining the minimum and maximum annualised simple interest rates that detected 

repos can have; and transaction cap, determining the maximum number of transactions that can 

comprise a detected repo. 

The conditions that together define a set of transactions as a ‘detected repo’ are: 

C1. All transactions occur within an interval of days not greater than maturity cap. 

C2. All transactions take place between the same two CSD accounts. 

                                                      

6 With minor modifications the algorithm would work if only the settlement day is observable, but would have more 

difficulty detecting some repos that involve more than one transaction on the same day. 
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C3. All transactions involve movement of securities with the same ISIN. 

C4. The implied simple interest rate from all cash movements in the set is in the interest bounds. 

C5. The set involves a net-zero transfer of securities; that is, the FV of securities provided as 

collateral equals the FV returned. 

C6. At no point does the lender return more securities than it has received. 

C7. The number of transactions in the set is not more than the transaction cap. 

C8. If there exist overlapping sets satisfying C1 to C7, sets with fewer transactions are retained over 

other sets they overlap with. 

C9. If C8 does not remove all overlapping sets (i.e. overlapping sets have equally few transactions), 

remaining overlaps are in some cases removed by favouring sets with the shortest implied 

maturity, or by otherwise choosing arbitrarily.7 

C1 to C5 capture the key assumed characteristics of a short-term repo – opposing transactions 

between the same accounts within a short period of time, with cash and securities movements 

consistent with a loan and its collateral. C6 and C7 impose realistic bounds on detected repos that 

serve to reduce false detections and the required computing capacity. 

C8 and C9 handle situations in which a transaction appears in multiple sets that each appear to be 

a repo. Sets with characteristics that repos tend to satisfy are favoured. Fewer-transaction sets are 

favoured first, and, in some cases, sets with shorter implied maturities are favoured next. If there 

still remain overlapping sets, for example, with equally few transactions and equally short maturities, 

a set is selected arbitrarily, given that the remaining sets are close enough to have little consequence 

for the dataset of detected repos. 

2.2 How the Algorithm Works and the Subset Sums Problem 

The process for detecting a two-transaction repo involves first selecting a ‘focus transaction’ – a 

transaction to treat as a potential loan initiation – then checking whether any subsequent transaction 

in the dataset pairwise satisfies C1 to C5 with the focus transaction. In contrast, for multiple-

transaction repos, C4 and C5 do not permit subsequent transactions to be checked individually; each 

possible combination of subsequent transactions must be checked as a set. This heavily increases 

the required computing capacity – a single focus transaction with, for example, 20 potential 

subsequent transactions, gives over a million possible combinations.8 Accordingly, it is important to 

comprehensively narrow down the number of potential transactions before applying C4 and C5, and 

then to apply C4 and C5 using an efficient method. The relative efficiency of different methods is in 

part determined by the programming language used – the algorithm presented here is written in R. 

                                                      

7 In some cases, longer-maturity sets may be selected over others because the crosschecking required would 

substantially increase computing time. This could be modified if computing capacity imposed less constraint. 

8 The number of possible combinations among N transactions is 2N. 
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For multiple-transaction repos, a focus transaction is selected, then a ‘candidate vector’ is formed of 

all other transactions that satisfy C1, C2 and C3. The candidate vector is then trimmed by applying 

C6. Next, all subsets of the candidate vector are checked against C5. Detecting subsets with zero 

net FV movement is a case of the ‘subset sums problem’, familiar to computer scientists. I combine 

two methods to solve the problem, implemented in R: first, a matrix-algebra method that checks 

subsets of limited size (bound above by computing capacity), then, if unsuccessful, an iterative 

method that checks larger subsets. The relative speed of each method can depend on computer 

specifications.9 The user decides the workload allocated to each method by specifying a ‘matrix max’ 

parameter, which determines the maximum subset size to check with the matrix-algebra method.10 

Subsets satisfying C5 are then screened against C4, C6 and C7, and overlaps removed by applying 

C8 and C9. 

The matrix-algebra method is illustrated in Equation (1). First, elements of the candidate vector of 

FVs are made negative if the transactions are in the same direction to the focus transaction. Then 

this vector of FVs is pre-multiplied by a matrix of 0s and 1s that represents all possible subsets, and 

the result is a vector of subset sums that can be checked for values equalling the focus transaction 

FV. The 0/1 matrix has a column for each transaction in the candidate vector, and a row for every 

possible subset, with 1s where the corresponding candidate element is present in that subset. In 

Equation (1), if the focus transaction FV is 50 and the candidate vector FVs are (–25, –30, 80), the 

subset represented by the (0, 1, 1) row of the 0/1 matrix is a candidate subset, because the 

corresponding element of the subset sums vector equals 50. 

 

0/1

0 0 0 0

1 0 0 25

0 1 0 30
25

1 1 0 55
30

0 0 1 80
80

1 0 1 55

0 1 1 50

1 1 1 25

matrix subset sums

candidatevector FVs

   
   

   
   

    
         

     
   
   
   
   
   

 (1) 

The 0/1 matrix can be quickly generated using the base R ‘expand.grid’ function, although its size 

exceeds memory limits for long candidate vectors. For the applications in this paper and the 

computing resources available, the maximum achievable length is 22. Matrix max can be set no 

higher than this maximum. For candidate vectors longer than matrix max, the vector is trimmed to 

matrix max length by excluding transactions furthest in time from the focus transaction, and then 

checked using the matrix-algebra method.  

If a repo is not detected by the matrix-algebra method I then use an approach that can 

accommodate longer candidate vectors. The full candidate vector is trimmed to a longer threshold, 

determined by computing capacity (45 in this paper), prioritising transactions closest in time to the 

                                                      

9 Modifications of the standard dynamic programming solution to the subset sums problem were found to be inefficient 

in this setting. 

10 In the code in the online supplementary information, this parameter is the ‘matrix.max’ argument in the top-level 

‘repo.alg.F’ function. 
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focus transaction. This vector is then checked using an ‘iterative’ method. Denoting the transaction 

cap in C7 as K, the method iterates through k = 1, …, K – 1, using the base R ‘combn’ function to 

construct each possible combination of k candidate vector elements, and checking their FV sums. 

For each k, this method is similar to applying the matrix-algebra method on the subset of the 

0/1 matrix that contains only rows with k non-zero elements. For example, for k = 1 these are the 

rows that form the identity matrix. If there are candidate vectors longer than this higher threshold, 

the computing constraints result in unchecked potential combinations. Section 3.2 assesses the 

consequences of this. 

2.3 The Algorithm Procedure 

Before running the algorithm, any transactions involving the RBA or ASX are removed. Detected 

intraday repos, defined as two transactions on the same day with the same ISIN, FV and 

consideration, and in opposite directions between the same two accounts, are also removed. This 

assumes an intraday interest rate of zero, consistent with intraday repos on offer from the RBA, 

although other assumptions on intraday interest rates or fees can easily be imposed.11 

For two-transaction repos, the process is essentially: 

Step 1.1 Select a transaction as the ‘focus transaction’. 

 1.2 Find all other transactions that satisfy C1 to C5 pairwise with the focus transaction (if 

any). Store the pairs.12 

 1.3 Repeat 1.1 and 1.2, treating every transaction in the dataset as a focus transaction. 

Store all pairs. 

 1.4 Sort all the stored pairs by increasing maturity, measured in days, with equal maturities 

ordered arbitrarily. 

 1.5 Define the first pair in the sorted list as a detected repo, remove from the list any 

subsequent pairs that it overlaps, and repeat down to the bottom of the list of pairs. 

Transactions in detected two-transaction repos are then removed and the remaining transactions 

are checked for multiple-transaction repos. The process is essentially: 

Step 2.1 Select a transaction as the ‘focus transaction’. 

 2.2 Find all other transactions that satisfy C1 to C3 pairwise with the focus transaction. 

Store these together in a ‘candidate vector’ that is linked to the focus transaction. 

 2.3 Remove transactions from the candidate vector that would violate C6 in any 

combination. 

                                                      

11 There is little evidence in the data that intraday repos occur at other interest rates or with a fixed fee. 

12  In practice, only the locations (e.g. row numbers) of transactions are stored. 
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 2.4 Repeat 2.1 to 2.3, treating all transactions as a focus transaction, and collect all 

candidate vectors. 

 2.5 Define a temporary maximum number of transactions, starting with three. 

 2.6 Select a candidate vector. Remove any transactions in already-defined detected repos. 

 2.7 Find subsets of the candidate vector with FVs summing to the focus-transaction FV 

using the methods discussed in Section 2.2, after making the FVs of transactions in the 

same direction as the focus transaction negative. Remove subsets not satisfying C4 or 

exceeding the temporary maximum number of transactions. If multiple remain, keep 

only the minimum-maturity subsets (measured as nights between first and last 

transaction), and if multiple still remain, arbitrarily select one. Define it as a detected 

repo.13 

 2.8 Repeat 2.6 and 2.7, working through every candidate vector. 

 2.9 Increase the maximum transaction number specified in 0 by one, repeat 2.6 to 2.8, and 

then repeat until the transaction cap is reached.14 

The online supplementary information contains the R code with explanations included as comments. 

3.  The Algorithm Performance 

In this section I assess the performance of the algorithm described in Section 2 by running it on 

transactions data and reporting statistics related to the detection procedure. This a) informs us about 

repo market practices, facilitating fine-tuning of this or other related algorithms; and b) provides an 

accuracy gauge of the resulting dataset of detected repos. 

3.1 The Transactions Dataset 

Upon request, ASX provided the RBA with securities transactions data from Austraclear, its central 

securities depository (CSD) for debt securities. Austraclear is the primary CSD for Australian dollar-

denominated debt securities. It is linked to the Reserve Bank Information and Transfer System 

(RITS), the RBA’s high-value settlement system. This permits Austraclear account holders to 

simultaneously settle securities with central bank money. In 2015, Austraclear maintained 

approximately 2 000 accounts held by approximately 850 entities, covering the vast majority of 

entities active in the Australian financial system.15 Its records capture every debt-security movement 

across its users’ accounts. 

                                                      

13 Alternatively, it would be straightforward to choose from overlapping repos using other characteristics such as implied 

interest rate or settlement times. 

14 For each temporary maximum transaction number, it is not necessary to iterate through the lower values of k referred 

to in the above description of the iterative method. However, the improvements in computing time from removing 

these iterations are small, and additional detections are possible given the constraints imposed on candidate vector 

lengths. 

15 Some statistics on Austraclear are available in CPMI (2016). 
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The dataset comprises eight two-month sample windows, covering September and October for the 

years 2006 to 2015, excluding 2007 and 2011.16 Other than discount securities (i.e. securities that 

do not have coupon payments) issued by non-government entities and cash-only transactions, all 

Australian dollar-denominated debt-security transactions in these periods are included. Each 

transaction record contains the variables listed at the beginning of Section 2. 

3.2 Running the Algorithm 

Throughout the paper the algorithm is run with the following parameters (unless otherwise 

specified): 

 Maturity cap: 14 days. 

 Interest bounds: 1 percentage point around the cash rate range during the two-month data 

window for that year. For example, in the 2008 window, the cash rate moved from 7.25 to 6 per 

cent, so the interest bounds for the window are 5 and 8.25 per cent. In the 2015 window the 

cash rate was constant at 2 per cent, so the interest bounds for the window are 1 and 3 per cent. 

These bounds permit greater volatility in market rates in windows with greater volatility in the 

cash rate. 

 Transaction cap: 6 transactions (including the focus transaction). 

As mentioned in Section 2.3, all transactions involving accounts related to the RBA or ASX are 

removed prior to running the algorithm. In addition, as a preliminary step, detected intraday two-

transaction repos are removed, if these repos satisfy C2, C3 and C5, and have an implied interest 

rate of zero.  

Table 1 reports statistics from running the algorithm on all available data. With matrix max set at 

22, the computing time for each data window ranged between 1 and 43 minutes. Around 85 to 

90 per cent of detected repos have only two transactions. Almost all of the two-transaction repos 

are ‘unique’, meaning that neither transaction in the repo could have potentially been in another 

two-transaction repo (row 3). Rempel (2016) finds that in the unsecured market, unique detections 

have lower false detection rates than non-unique detections. Of the multiple-transaction repos, very 

few are detected using the iterative method, likely reflecting the low proportion of candidate vectors 

longer than 22 (row 6). This part of the algorithm could potentially be removed at little practical cost 

to speed up computing time.17 The very low proportion of candidate vectors longer than 45 implies 

that computing capacity placed very few practical constraints on the results. 

                                                      

16 The periods captured are in part determined by data availability. 

17 The code provided in the online supplementary information has an option to switch off this part of the algorithm, or 

to switch off multiple-transaction repo detection completely. 
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Table 1: Statistics on Repo Detection Procedure 

 2006 2008 2009 2010 2012 2013 2014 2015 

Total repos (excl intraday) 1 281 1 459 2 177 3 273 4 076 3 857 4 705 3 891 

Two transactions 1 159 1 324 1 993 2 959 3 774 3 621 4 420 3 659 

Unique 1 132 1 313 1 966 2 917 3 677 3 479 4 190 3 478 

More than two transactions 122 135 184 314 302 236 285 232 

Iterative method 0 0 1 5 14 0 9 0 

CVs with length ≤ 22 (%) 99.2 82.2 93.7 91.8 96.5 98.8 90.1 99.1 

CVs with length ≤ 45 (%) 100.0 91.2 99.5 99.6 99.8 100.0 97.6 100.0 

Longest CV 28 89 50 54 54 30 83 36 

Intraday repos 47 47 78 74 135 415 219 165 

Total transactions(a) 20 636 19 873 27 505 32 743 38 191 35 565 41 746 36 911 

Proportion in repos (%) 13.6 16.0 17.3 21.9 23.2 24.9 24.6 22.8 

Notes: CV denotes candidate vectors 

 (a) Excluding transactions involving the RBA or ASX and transactions with zero consideration (which appear to often be for 

account-maintenance purposes) 

Sources: ASX; Author’s calculations 

 

Table 2 reports how many and what type of transactions are in each detected repo. Very few 

detected repos have more than three transactions, and the sparsity of repos with six transactions 

indicates that the transactions cap is relatively inconsequential. Partial repayments are more 

common than loan increases by a small margin. Collateral movements, that is, zero-cash transactions 

within repos, occur rarely, and given the possibility of false detections (discussed in Section 3.3), 

potentially never.18 

Table 2: Structures of Detected Multiple-transaction Repos 

 2006 2008 2009 2010 2012 2013 2014 2015 

Three transactions 104 107 137 206 203 179 202 182 

Four transactions 16 20 35 71 66 45 50 35 

Five transactions 1 6 8 19 26 5 19 11 

Six transactions 1 2 4 18 7 7 14 4 

Partial repayment 77 98 112 215 185 149 182 136 

Loan increase 54 56 97 162 159 121 155 126 

Collateral movement 0 0 2 0 1 0 1 0 

Sources: ASX; Author’s calculations 

 

3.3 Assessing Misidentification of Repo Transactions 

False detections are detected repos that are actually transactions carried out for other purposes. 

False omissions are actual repos whose transactions appear in the transactions data but are not 

detected by the algorithm. There is a trade-off between false detections and false omissions. For 

example, setting wider interest bounds is likely to decrease false omissions while increasing false 

                                                      

18 Wakeling and Wilson (2010) report that there is no fixed convention for collateral top-ups in Australia. The transactions 

data are checked for signs of collateral swaps – that is, while a repo is open, a provision of a new type of collateral 

and a return of the original type – and no evidence for this behaviour is found. 
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detections. The choice of parameters and indeed the overall algorithm structure must acknowledge 

this trade-off and balance these two sources of error. Ashcraft and Duffie (2007), for example, only 

permit unsecured loans to be made at certain times of the day, and Rempel (2016) requires non-

unique detected unsecured loans to have interest rates at certain increments. These choices reduce 

false detections but likely increase false omissions. This section demonstrates that ways to reduce 

the false detection rate would include narrowing the interest bounds, or bypassing the multiple-

transaction repo detection stage, potentially without a large increase in false omissions. 

3.3.1 Assessing false detections 

The most likely cause of false detections is when groups of outright securities trades coincidentally 

satisfy C1 to C7. That is, a false detection can occur when two outright trades occur in opposite 

directions between the same counterparties, involving the same type and quantity of securities, and 

have considerations (i.e. cash legs) resembling principal and interest. Such considerations could be 

caused by a change in market price that, when annualised, is within the interest bounds. The 

required price increase is small. For instance, for an overnight repo when the cash rate is 7 per cent, 

the ‘false detection’ price increase is around 0.02 per cent. In comparison, in the 2012 to 2015 

windows the median absolute daily price change for AGS and state government-issued securities 

(SGS) is 0.1 per cent. 

False detections can be gauged by performing a placebo test on the algorithm, running it on data 

or algorithm parameters that are unlikely to capture any actual repos, and counting the detections. 

For the Canadian unsecured market, Rempel (2016) runs the Furfine algorithm on payments data 

after randomly reshuffling the dates so that consecutive days no longer appear consecutively in the 

data. Any detected overnight loans must therefore be false detections rather than actual overnight 

loans. However, the most likely reason for falsely detected repos – groups of outright trades that 

resemble repos – is dependent on the distance between transaction days. That is, small securities 

price changes that resemble feasible interest rates are more likely between consecutive days than 

between days further apart, so changing the ordering would likely underestimate false detections.19 

Rather than using the Rempel (2016) approach, I run the algorithm on the true data with C4 set at 

‘placebo’ interest bounds in which actual repos are very unlikely to occur, but that are roughly equally 

susceptible to falsely detecting two outright trades. For placebo bounds I use the negative of the 

‘standard’ interest bounds described in Section 3.2.20 Assuming that very small negative and positive 

securities price movements are equally likely, these placebo bounds and the standard bounds would 

have a similar number of false detections.21 This can be interpreted as a special case of the approach 

by Rempel, one that uses only reshuffles that preserve distance between days. That is, a detection 

in the placebo bounds would appear as a repo with a positive interest rate if the loan and repayment 

dates were swapped. Since arbitrage relationships lead debt securities prices to move in the opposite 

direction to the cash rate, I focus on the 2009, 2010 and 2012 windows, in which the cash rate 

                                                      

19 The Rempel (2016) approach has the advantage that the distribution of false detections can be estimated by repeating 

the exercise on many different data reshuffles. 

20 For example, if the cash rate is 4.5 per cent throughout a sample window, the standard bounds are 3.5 and 5.5 per 

cent, and the placebo bounds are –5.5 and –3.5 per cent. 

21 It is possible that securities lending occurs at negative interest rates. This would bias the estimated false detection 

rate upward. It is also possible that short-selling activity satisfies the algorithm conditions, because a short sale must 

typically be followed by the seller repurchasing the same securities to return to the securities lender (although the 

purchase may be from a different counterparty). 
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increased 0.25 per cent, stayed constant, and declined 0.25 per cent, respectively. The placebo 

bounds are also the same width as the standard bounds, so are equally susceptible to any other 

causes of false detections that are uniformly distributed across implied interest rates. 

Table 3 reports the results from this exercise, including separate statistics for two-transaction and 

multiple-transaction repos.22 Overall, the proportion of detections at placebo bounds to detections 

at standard bounds (the ‘false detection rate’) is 3.2 per cent. Multiple-transaction repos have a false 

detection rate of 26.4 per cent, contributing the majority of false detections despite being less than 

10 per cent of total detected repos (at the standard bounds). This indicates that a random 

combination of three or more transactions is much more likely to satisfy C1 to C7 than a random 

combination of two transactions. For two-transaction repos alone, the overall false detection rate is 

1 per cent. 

Table 3: Estimating False Detection Rates using Placebo Interest Bounds 

Placebo detections as a percentage of standard repo detections 

 2009 2010 2012 Total 

Total repos 1.56 3.76 3.53 3.16 

Two-transaction repos 1.00 1.32 0.82 1.03 

Multiple-transaction repos 7.61 26.75 37.42 26.38 

Sources: ASX; Author’s calculations 

 

Figure 2 visualises the placebo exercise across all of the eight two-month data windows, focusing 

on detections within 1 percentage point from the cash rate. Consistent with false detections being 

randomly scattered, placebo detections are distributed roughly uniformly across the interest rate 

intervals, and do not appear more common at implied interest rates closer to zero (i.e. towards the 

right of the figure). In contrast, repo detections peak at the cash rate and quickly tail off on each 

side. The false detection rate would therefore almost certainly be lower if interest bounds were set 

more narrowly around the cash rate. 

Another way to examine false detections is to look for implied interest rates that are not whole basis 

points. There are several feasible reasons why interest rates on actual repos may not be rounded, 

so the rate of non-rounded implied interest rates is best considered as an extreme upper bound on 

the rate of false positives. For example: interest rates could be renegotiated during the loan (and 

the detected repo would show a mean over the life of the repo); repos could be rolled over and 

interest compounded; interest rates could be agreed as fractions of a percentage point rather than 

as basis points; or any combination of these. 

                                                      

22 The three years reported in Table 3 have higher false detection rates than all other years in the data. 
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Figure 2: Repo Detections at Placebo Rates 

Against spread to cash rate or to negative of cash rate, log scale 

 

Notes: Algorithm run with 14-day maturity cap on all available transaction data; rounded to 0.1 percentage points 

Sources: ASX; Author’s calculations 

Table 4 reports the number of repos detected with implied simple interest rates that, when measured 

in basis points with two decimal places, have any non-zero decimals (‘non-rounded rates’). The 

probability of a falsely detected random combination of transactions satisfying this criterion is around 

1 per cent. Repos spanning monetary policy decisions are excluded because these are more likely 

to have experienced a renegotiated rate. Overall, 13 per cent of detected repos have non-rounded 

rates. The proportion for multiple-transaction repos is 90 per cent. While this is consistent with 

Table 3 showing that multiple-transaction repos having the highest false detection rates, the 

proportion is likely pushed up owing to the fact that repos that involve a transaction between the 

initial loan and final repayment are also more likely to experience renegotiated, averaged or 

compounded interest. 

Table 4: Detected Repos with Non-rounded Simple Interest Rates 

As a percentage of detected repos 

 2006 2008 2009 2010 2012 2013 2014 2015 Total 

Total repos 14.27 14.61 14.34 15.49 13.17 12.59 10.87 9.29 12.55 

Two-transaction 

repos 7.51 7.91 7.45 8.51 7.33 7.67 6.27 5.12 7.01 

Multiple-transaction 

repos 81.19 89.52 91.88 92.27 93.85 94.76 88.56 82.81 90.01 

Notes: Non-rounded is defined as any non-zero decimals when measured in basis points with two decimal places; repos spanning 

policy decisions are excluded from calculations 

Sources: ASX; Author’s calculations 
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3.3.2 Assessing false omissions 

False omissions, defined as actual repos that appear in the transactions data but are not detected 

by the algorithm, can only be caused by actual repos violating conditions C1 to C9, or the constraints 

imposed by computing capacity. Computing constraints have been discussed in Section 3.2 and likely 

cause very few false omissions. 

To gauge the likelihood of false omissions caused by condition violations, I count the additional 

repos that are detected when the conditions are relaxed in ways that accommodate the most likely 

reasons for their violations. The conditions and the ways I relax them are: 

 C2: All transactions occur between the same two Austraclear accounts. A feasible violation would 

be an entity that owns multiple accounts using different accounts for the loan and repayment 

transactions. To test this, the Austraclear account IDs are replaced with a smaller set of IDs that 

group accounts held by related parties, before re-running the algorithm.23 

 C3(i): The loan and repayment transactions involve the same ISIN. Similar in concept to the 

previous bullet point, ISINs can be replaced with a more general label of AGS, SGS or other.24 

 C3(ii): All transactions involve movement of securities. Cash-only transactions could feasibly occur 

within repos if the interest is paid in a separate transaction to the principal repayment. Such cases 

would resemble a repo with zero interest, which can be detected with interest bounds at zero. 

Notwithstanding, repos with zero interest could also be securities loans. 

 C3(iii): All transactions involve the same ISIN. In some repo markets collateral for a single repo 

can be spread across multiple ISINs (e.g. Fuhrer et al 2016). Market intelligence has indicated 

that in the Australian repo market multiple-ISIN repos occur rarely, if ever. To test this, I look for 

four-transaction repos involving two different AGS ISINs, with an implied net-zero FV transfer for 

each ISIN. Specifically, I count detections that: comprise four transactions; have two lending 

transactions on one day with different ISINs; and have two repayment transactions on a later 

day with ISINs and FVs matching the two lending transactions.25 

To minimise the likelihood of any additional detections being false detections, the analysis is 

restricted to two-transaction repos (or four-transaction repos for C3(iii)). First, two-transaction repos 

are detected using the standard conditions and removed from the transactions data, then the 

algorithm is re-run with the relaxed conditions. For some of the condition relaxations, I also report 

the percentage of additional detections whose implied simple interest rates have two zero decimals 

when measured in basis points. These detections are much less likely to be false detections. 

There appear to be some repos violating C2 and C3, but not many (Table 5). There is strong evidence 

that counterparties to a repo sometimes lend and repay using different accounts, although the 

frequency is 0.6 per cent of repos detected under the standard conditions. There are also repos with 

implied interest rates of zero. However, most of these involve accounts related to the ICSDs, which 
                                                      

23 Only transactions between entities that appear in standard detected repos are retained for this exercise. 

24 This would also capture instances of the borrower replacing the collateral type during the life of the repo, if the original 

and replaced collateral had the same face value, and had different ISINs but the same general label. 

25 Note that these would be detected as two separate repos under the standard conditions if the considerations in the 

repayment transactions aligned with the two lending transactions plus interest. 
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are more likely to conduct repos related to transactions occurring outside the Austraclear data. 

Moreover, some of these detections may be securities loans. Overall, the evidence suggests false 

omissions for non-ICSD-related repos are negligible. 

Table 5: Detections with Generalised Repo Definitions 

 2006 2008 2009 2010 2012 2013 2014 2015 Total 

C2: generalised account IDs 

No of generalised accounts 51 51 52 53 48 47 46 46 na 

(No of standard accounts) (85) (81) (85) (83) (80) (74) (71) (72) na 

Detected 29 8 11 39 15 11 9 6 128 

With rounded rates (%)(a) 84.21 71.43 70.00 97.30 92.31 80.00 71.43 66.67 85.32 

Relative to standard (%) 2.50 0.60 0.55 1.32 0.40 0.30 0.20 0.16 0.56 

C3(i): generalised security types 

Detected 14 7 5 20 17 22 33 29 147 

With rounded rates (%)(a) 0 0 0 0 0 0 0 0 0 

Relative to standard (%) 1.21 0.53 0.25 0.68 0.45 0.61 0.75 0.79 0.64 

AGS or SGS 1 4 3 10 6 12 4 4 44 

C3(ii): zero implied interest 

Detected 17 9 17 30 96 83 32 38 322 

Relative to standard (%) 1.47 0.68 0.85 1.01 2.54 2.29 0.72 1.04 1.41 

Detected excluding ICSDs 0 2 1 11 20 11 12 12 69 

C3(iii): two ISINs, four transactions 

Detected 0 0 0 0 0 0 0 0 0 

Note: (a) Detected repos spanning policy decisions removed from this calculation 

Sources: ASX; Author’s calculations 

 

Some of the conditions C1 to C9 are not addressed in the above analysis. Violations of C4 – repos 

with interest rates outside the interest bounds – are feasible, but detecting these would raise the 

number of false detections. That is, while the number of detected repos trails off heavily away from 

the cash rate, the number of false detections does not (Figure 2). Gauging violations of C8 and C9 

is more difficult. Most violations would have a corresponding false detection, being the other set of 

transactions satisfying C1 to C7 that were discarded because they overlapped the detected repo 

favoured by C8 and C9.26 

4. Comparing the Output with Prudential Data 

The RBA analyses partially aggregated data on repo positions collected by the Australian Prudential 

Regulation Authority (APRA).27 Registered financial corporations (RFCs) with assets above 

$500 million and Australian-licensed authorised deposit-taking institutions (ADIs) provide quarterly 

reports of repo and securities-lending positions held on their domestic books. They report the value 

of aggregate positions per counterparty type per collateral type, separately for borrowing and 

lending positions. There are twelve counterparty types, one being the RBA, and four collateral types, 

                                                      

26 In an earlier version of the algorithm, the maturity was given higher priority than the number of transactions for 

multiple-transaction repos, and the number of repo detections was very similar. 

27 The APRA dataset in more aggregated form can be found in statistical table B3 ‘Repurchase Agreements and Stock 

Lending by Banks and Registered Financial Corporations’ at <https://www.rba.gov.au/statistics/tables/>. 
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comprising AGS, SGS, other debt and equities. For example, 1 of the 96 figures in each entity’s 

quarterly report is lending positions to non-resident counterparties against AGS collateral. 

The APRA data generate two aggregated series – repo lending by reporting entities and repo 

borrowing by reporting entities (excluding from the RBA). The difference between these reflects net 

lending from reporting entities to non-reporting entities such as foreign institutions. The algorithm 

data can be compared to these series by aggregating detected repos that are open at September 

ends (Figure 3).28 These algorithm and APRA series display broadly similar trends for AGS and SGS 

repos. However, the algorithm positions are smaller than the quantities reported to APRA, more so 

for the APRA lending series. There are several likely reasons. For repos against ‘other debt’, the 

difference would include any repos against discount securities, which are not in the transactions 

dataset I analyse and therefore not detected by the algorithm. 

Figure 3: Outstanding Repos (excluding RBA) by Data Source 

Austraclear sample years as at end September 

 

Notes: Austraclear sample years are 2006, 2008, 2009, 2010, 2012, 2013, 2014 and 2015 

 (a) Algorithm run with 61-day maturity cap 

Sources: APRA; ASX; Author’s calculations; RBA 

For AGS and SGS collateral, the difference likely reflects repos transacted through infrastructure 

other than Austraclear. Two ICSDs – Euroclear and Clearstream – enable their participants to 

transact Australian dollar-denominated securities that are ultimately held in Austraclear, but without 

transactions between Austraclear accounts taking place. The securities are held by a nominee with 

an Austraclear account on behalf of the ICSD, and the ICSD holds them on behalf of its participants. 

When the ICSD participants transact with each other the ICSD changes its own records of the 

securities’ ownership but, in Austraclear, the securities remain in the nominee’s account. Since the 

                                                      

28 For this section I set the maturity cap at 61 days, the interest bounds at 1 percentage point either side of each 

window’s cash rate range, and the transaction cap at 6. I use the longer maturity cap because repos of all maturities 

are reported to APRA. 
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ICSDs have no direct link to RITS, any Australian-dollar cash settled simultaneously with these 

transactions takes place across accounts at a private bank employed by the ICSD. 

This reason for the difference across data sources – the APRA data capturing repos settled through 

foreign infrastructure – is consistent with the algorithm figures being closer to the APRA borrowing 

figures than the APRA lending figures (Figure 3). Recall that the gap between the APRA lending and 

borrowing series reflects net lending from entities that report to APRA to entities that do not. Becker 

and Rickards (2017) attribute a substantial part of this net lending to demand from non-residents 

for Australian dollar repo funding as part of international arbitrage positions. Since non-residents are 

more likely to hold ICSD accounts than Austraclear accounts, it seems likely that these lending 

positions would not appear in the algorithm data. 

There are several more reasons why repos could be reported to APRA but not appear in the algorithm 

data. First, like repos through ICSDs, other repos could occur within a single Austraclear account 

(thus, without any Austraclear transactions), if they are between counterparties that are part of the 

same company, between two clients of the same Austraclear participant, or between an Austraclear 

participant and one of its clients. Second, repos would be absent from these algorithm data if any 

of their transactions occur before or after the two-month transaction sample ends. This is likely for 

repos open longer than a month and definite for repos open longer than two months. Third, repos 

involving Australian dollar-denominated securities but foreign currency would not be detected 

because the cash side would not appear in the Austraclear data. Fourth, securities loans are reported 

to APRA but, if the interest rate is below the interest bounds, they would not be detected by the 

algorithm. This is plausible given what is known about securities lending markets. Finally, repos 

initiated on the same day between the same counterparties and involving the same ISIN can be 

bilaterally netted before being transacted in Austraclear, but the gross positions may still be reported 

to APRA. It is also possible that repos reported to APRA are netted against trades in the underlying 

securities before being transacted in Austraclear. 

To more formally compare the datasets, I regress APRA observations on corresponding algorithm 

observations, similar to the approach by Kovner and Skeie (2013). Three levels of data aggregation 

are considered: an observation per entity per year per collateral type; an observation per entity per 

collateral type (i.e. aggregated across years); and an observation per year per collateral type 

(i.e. aggregated across entities). To better align the datasets, entities whose APRA-data and 

Austraclear-account IDs cannot be closely matched are removed. The algorithm is run with a 

maturity cap of 61 days, and the APRA observations exclude positions held with counterparties other 

than banks, RFCs, other ADIs and non-residents. 

Table 6 reports the estimates. Regression exogeneity assumptions could feasibly be violated, so the 

estimates and significance levels should be interpreted with some caution. Notwithstanding this, in 

all specifications the estimated slope coefficients indicate a statistically significant positive 

relationship between the algorithm and APRA data, denoted by the asterisks on the right of the 

coefficients. The datasets are clearly positively related. Given this, I also test the hypothesis that the 

two datasets move one-for-one, that is, that the slope coefficient equals one, with significance 

denoted by the asterisks to the left of the coefficient estimates. In only one case is this hypothesis 

not rejected. Loosely speaking, the APRA lending figures tend to vary more than the algorithm 

figures (i.e. coefficients greater than one), and the APRA borrowing figures tend to vary less 

(i.e. coefficients less than one). Correlations between the two datasets vary between 0.4 and 0.9, 
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with little discernible difference for the APRA lending and borrowing datasets. This similarity in 

correlations may indicate that repo activity through Austraclear is correlated with repo activity 

through other infrastructure. 

Table 6: OLS Regressions of APRA Data on Algorithm Data 

Variables measured in $ billion 

 Entity and year level  Entity level  Year level 

Lending Borrowing Lending Borrowing Lending Borrowing 

Intercept 0.533*** 

(0.07) 

0.440*** 

(0.05) 

 1.382** 

(0.55) 

1.618*** 

(0.34) 

 5.178*** 

(0.89) 

3.779*** 

(0.70) 

Slope ***1.452*** 

(0.16) 

***0.519*** 

(0.07) 

 ***2.487*** 

(0.32) 

**0.757*** 

(0.11) 

 ***2.056*** 

(0.22) 

0.983*** 

(0.13) 

Correlation 0.45 0.41  0.69 0.65  0.90 0.85 

R squared 0.21 0.17  0.47 0.43  0.80 0.73 

Sample size 309 304  69 69  24 24 

Notes: **p < 0.05, ***p < 0.01; asterisks on the left of slope coefficients test whether coefficients equal one; OLS standard errors 

in parentheses 

Sources: APRA; ASX; Author’s calculations; RBA 

 

Unfortunately it is not possible to precisely account for each difference between the APRA and 

algorithm data, which must be kept in mind for the analysis in Section 5. Nevertheless, there is 

widespread ownership of Austraclear accounts across entities active in the Australian financial 

system (including many related to branches and subsidiaries of foreign banks). These entities have 

some incentive to use Austraclear rather than ICSDs owing to Austraclear’s ability to simultaneously 

settle securities against domestic central bank currency. Moreover, for AGS and SGS repos, the 

algorithm and APRA series display similar trends across time. Taking everything into account, it 

seems reasonable to interpret the algorithm data as capturing the short-term domestic interbank 

repo market, acknowledging that this omits repos transacted through foreign infrastructure. This 

corresponds to the typical definition of the Australian unsecured interbank market, which only 

includes loans that are transacted through RITS. 

5. The Australian Repo Market Microstructure 

Now that we have a database of repo market transactions that is confirmed to be reasonably 

accurate, I examine the repo market microstructure implied by these data. The data cover the 

segment of the short-term (i.e. two weeks or less) repo market that is transacted through 

Austraclear. As discussed in Section 4, it seems reasonable to view this segment as the domestic 

interbank market, loosely defining all financial institutions as banks, and excluding from this 

definition repos involving banks with little presence in Australia. By comparison, previous published 

RBA analysis of the repo market adopts a broader scope more in line with activity reported to APRA. 

It is also worth reminding readers that the data in this section cover windows of September and 

October, which may not be representative of repo activity in other parts of the year, although the 

APRA data do not indicate much quarter-on-quarter volatility. Notwithstanding, there is some 

evidence that activity in short-term repos declines at quarter ends. On average, the value of detected 

repos outstanding declines 10 per cent in the two weeks encompassing each quarter end, relative 

to the value of detected repos the week before and the week after these two weeks. 
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In the following analysis, detected repos with particular characteristics are sometimes excluded to 

reduce the potential influence of false positives or of repos that are not representative of the 

information being conveyed. For example, when analysing spreads to the cash rate, repos open 

across the night after RBA Board meetings are typically excluded, because reference rates used by 

repo counterparties may diverge from the cash rate in those periods. Also, multiple-transaction repos 

are excluded where a small number of false positives could skew the information provided.29 

As mentioned in the Introduction, the algorithm data treat securities loans – sometimes referred to 

as special repos – as a subset of repos. As opposed to ‘general collateral (GC) repos’, which are 

driven by the securities provider’s demand for cash, securities loans are driven by the securities 

receiver’s demand for the specific collateral. The securities receiver may, for example, be using the 

security to cover a short sale or to temporarily increase its inventories. In Australia, securities 

borrowers typically provide cash to collateralise the securities loan, which makes their transactions 

difficult to distinguish from other types of repos. This distinction can also be difficult conceptually, 

because there is likely some element of demand for cash in a typical securities loan, and of demand 

for the securities received in a GC repo. Throughout the following analysis the term ‘repo’ includes 

securities loans to the extent they satisfy the interest rate bounds, and ‘lender’ and ‘borrower’ always 

refer to the provider and receiver of cash (respectively). 

5.1 Market Size, Collateral Types, Interest Rates and Maturities 

The algorithm data reveal many repo characteristics not observable in previously available datasets. 

This section starts by describing the aggregate detected market, then analyses distributions of 

important variables such as collateral types, maturities (measured as number of days open) and 

interest rates. This informs us about, for example, the role that certain types of securities perform 

in our financial system, and the degree to which monetary policy transmits into other interbank 

rates. 

Between 2006 and 2015 the market size grew from around $5 billion to around $12 billion, measured 

by the value of outstanding positions on a typical night (Figure 4). In 2008, the SGS repo market 

was larger than the AGS repo market. Garvin, Hughes and Peydró (forthcoming) show that the repo 

market expanded substantially during the 2008 window, which captures the period surrounding the 

Lehman Brothers collapse, and the growth was primarily in SGS repos. They attribute this to 

increased demand for repo alongside a relative scarcity of AGS. In later years the proportion of the 

market against SGS declined, and in 2015 was less than a tenth the size of the AGS repo market. 

Throughout the full sample there is relatively little activity in repos against other-debt collateral, 

although any repos against privately-issued discount securities would not be captured (see 

Section 4). 

                                                      

29 Section 3.3 estimates that repos with more than two transactions have a false detection rate of around 26 per cent, 

whereas repos with two transactions have a false detection rate of around 1 per cent. 
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Figure 4: Outstanding Repo Positions 

Total open positions on an average night 

 

Notes: September and October only; algorithm run with 14-day maturity cap; averaged across all nights excluding first and last two 

weeks each window 

Sources: ASX; Author’s calculations 

Table 7 reports the ten issuers whose debt securities are most commonly used as repo collateral, 

and how many repo counterparties (i.e. number of Austraclear accounts) use that collateral. Aside 

from the Australian Government, the most prevalent issuers are the Queensland and NSW state 

governments, followed by the Victorian and Western Australian state governments. The most used 

other-debt collateral is issued by two supranationals and two German development banks. Collateral 

types tend to be broadly accepted – all in the table are provided by at least 16 different borrowers 

and accepted by at least 16 different lenders, with higher numbers for the more prevalent types. 

Two private sector entities rank twelfth and thirteenth (not shown in the table) with around 50 

detected repos each. 

Focusing on the 2015 window, the market does not appear to concentrate in particular ISINs within 

the AGS category of collateral (Table 8). Of the 32 ISINs on issue at some point in the window, all 

bonds and all but 1 treasury note appear in repos at least once. Each (non-indexed) treasury bond 

ISIN is used in at least 6 repos and each treasury indexed bond ISIN is used in at least 16 repos. 

Treasury bond ISINs tend to be favoured over other AGS ISINs, likely related to their long tenor and 

the large quantity on issue. 
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Table 7: Ten Most Common Collateral Types across Full Sample 

Collateral classified by issuer 

Issuer Detected repos Borrowers Lenders 

Australian Government 15 879 59 62 

Queensland Treasury Corporation 2 894 48 54 

New South Wales Treasury Corporation 2 278 48 51 

Treasury Corporation of Victoria 859 40 45 

Western Australian Treasury Corporation 849 47 43 

European Investment Bank 309 29 32 

KFW Banking Group (Germany) 271 27 28 

South Australian Financing Authority 170 26 36 

Landwirtschaftliche Rentenbank (Germany) 119 21 22 

International Bank for Reconstruction and Development 79 16 16 

Note: Algorithm run with 14-day maturity cap 

Sources: ASX; Author’s calculations 

 

Table 8: Each AGS ISIN’s Frequency of Use as Collateral in 2015 

Frequency refers to number of detected repos 

 Treasury bonds Treasury indexed bonds Treasury notes 

Number of ISINs on issue 22 7 3 

Lowest frequency of an ISIN 6 16 0 

Median ISIN frequency 121 30 3 

Highest frequency of an ISIN 213 37 4 

Notes: Algorithm run with 14-day maturity cap; repos with more than two transactions excluded 

Sources: ASX; Author’s calculations 

 

Figure 5 plots the interest rate spread to the cash rate for every repo, excluding those open across 

RBA policy decisions. The position on the x-axis represents the business day and time the first 

transaction in the repo was settled. For example, a point in the 2015 panel at (20.5, –10) would 

represent a repo 20.5 business days into the 2015 September–October window – that is, at 12 pm 

on the 21st day – at 10 basis points below the cash rate. When plotted observations overlap they 

may not all be visible in the figure; the layering from least visible to most visible reflects their 

frequency – AGS, SGS, then other-debt collateral. 

At each point in time rates tend to be dispersed in a 50 basis point range, even within collateral 

types. The cross-sectional variance overshadows the market-wide variance across days, although 

the distribution of spreads tightens from 2006 to 2015. This could relate to, for example, a shift 

towards shorter maturities, discussed later in this section, a change in the dispersion of loan sizes, 

or changes in the role of the market. Spreads tend to be concentrated at multiples of 5 basis points, 

indicating common use of the cash rate as a reference rate. 

Around 42 per cent of the positive spreads in Figure 5 are overnight repos, which suggests that 

access by these borrowers (i.e. cash receivers) to the unsecured market was constrained; otherwise 

they would borrow unsecured at a lower rate and without any collateral obligation. There is also a 

cluster of repos at 25 basis points below the cash rate. These repos are likely securities loans, 
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consistent with the relatively high frequency of non-government collateral.30 Market intelligence also 

indicates that rates on securities loans are sometimes negotiated from a reference point of 25 basis 

points below the cash rate. 

Figure 5: Repo-level Spreads by First-leg Day and Time 

Spread to cash rate against time 

 

Notes: September and October only; algorithm run with 14-day maturity cap; repos spanning policy decisions excluded 

Sources: ASX; Author’s calculations; RBA 

Figure 6 plots the pattern of increasing spreads evident in Figure 5, displaying the median spread 

each year for AGS and SGS repos. Becker, Fang and Wang (2016) and Becker and Rickards (2017) 

also note increasing market-wide repo rates towards the end of this sample, finding evidence that 

demand for Australian dollar funds from non-resident borrowers has been contributing to these rises. 

A noticeable deviation between AGS and SGS spreads occurs in 2008. Garvin et al (forthcoming) 

conclude that this is at least partly driven by demand for AGS (i.e. the highest quality collateral) 

alongside a relative scarcity on issue. 

                                                      

30 These include repos against all three collateral types, although the repos against AGS and SGS are partly hidden by 

the other-debt repos. 
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Figure 6: Median Repo Spreads Each Year 

Spread to cash rate 

 

Notes: September and October only; algorithm run with 14-day maturity cap; repos spanning policy decisions excluded; one high 

turnover borrower-lender pair excluded 

Sources: ASX; Author’s calculations; RBA 

For maturities of 14 days or less, there is little evidence of a yield curve (Figure 7). Only repos with 

rounded interest rates are displayed, because these are more likely to have terms negotiated at the 

start of the repo rather than being rolled over, and therefore the time between the first and last 

transactions is more likely to represent overall maturity rather than the sum of several rolled over 

maturities.31 Spreads for 1-, 2- and 3-day maturities tend to be relatively flat, and spreads at 14 days 

tend to tick up. Nevertheless, there is no clear systematic trend evident. 

Figure 8 defines maturity as business nights between the first and last transaction, excludes repos 

most likely to be rollovers, and displays the market share at each maturity. Between 2006 and 2015 

the market shifts towards overnight maturities. In all displayed years there is substantial market 

share at one-week maturity (i.e. five business days); however, this declines from around 30 per cent 

in 2006 to be below 25 per cent in every subsequent year in the sample (including those not 

displayed). Excluded from Figure 8 is a borrower-lender pair that in 2015 contributes a 

disproportionate share of turnover; including them makes the overnight market share above 50 per 

cent. 

                                                      

31 Rounded interest rates have only zero decimals when measured in basis points with two decimal places. See 

Section 3.3.1 for further discussion. 
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Figure 7: Median Repo Spreads by Maturity 

Spread to cash rate 

 

Notes: September and October only; algorithm run with 14-day maturity cap; repos with more than two transactions, spanning policy 

decisions or with non-rounded interest rates excluded; one high turnover borrower-lender pair excluded 

Sources: ASX; Author’s calculations; RBA 

Figure 8: Repo Maturities by Share of Value 

Outstanding positions on an average night 

 

Notes: September and October only; algorithm run with 14-day maturity cap; repos with more than two transactions or with non-

rounded interest rates excluded; one high turnover borrower-lender pair excluded; averaged across all nights excluding the 

first and last two weeks of each window 

Sources: ASX; Author’s calculations 
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For an indication of whether repos occur at maturities above two weeks, I also run the algorithm 

with a 61-day maturity cap. For these longer maturity repos, turnover is a more useful measure of 

activity than share of outstanding positions.32 In 2006, there is a pronounced spike in turnover 

detected at 30 days (retaining non-business days) that comprises 12 per cent of total turnover. In 

2015, aside from a small spike of around 0.5 per cent of turnover at 21 days, activity at maturities 

longer than 14 days is scarce.33 

5.2 Loan-level Regressions of Repo Rates 

Next I analyse repo interest rates by regressing them on other repo characteristics. This allows 

formal tests of whether repo rates vary with other repo characteristics while holding potentially 

confounding variables constant. Treating each detected repo from 2012 to 2015 as an observation, 

I regress interest rates on appropriate transformations (specified in Table 9) of the following 

variables: the quantity of lender’s OMO borrowing that morning;34 the size of the repo (i.e. cash 

lent); a dummy indicating whether the lender subsequently sold the collateral it received while the 

repo was still open, indicative of the repo being used to cover a short sale;35 dummies for maturity 

buckets; dummies for collateral types; and a dummy indicating whether the collateral was a 

reference bond in the futures market.36 

Individual repos are indexed by i, such that the space of i includes dimensions for lender l, 

borrower b and day d (and therefore also year y), with lender and borrower measured at the CSD 

account level. The set of explanatory variables is labelled X. I estimate two equations: 

 i d irate    Xβ  (2) 

and 

 i d bly irate      Xβ  (3) 

 

                                                      

32 To illustrate this point, consider that a 60-day repo represents the same share of outstanding positions as 60 overnight 

repos of the same value. However, there are only 61 days in each data window, so we can only observe 60-day repos 

if they are initiated in the first day of the window. Therefore, while the share of overnight repos is calculated from 

many observations, the share of 60-day repos is calculated from a very small number of observations (and requires 

an upward adjustment to acknowledge this limited ability to observe). This 60-day share may not be representative 

of general activity, particularly given the possibility of false detections. It is therefore problematic to directly compare 

the market shares of repos that have large differences in maturities. 

33 These turnover shares are underestimates of the true values due to the issue discussed in the previous footnote. Still, 

the degree of underestimation depends primarily on the repo’s maturity, so spikes in turnover share relative to shares 

at similar maturities are somewhat reliable indicators of greater activity. 

34 OMO borrowing is measured as funds received on that day from the Austraclear account that the RBA uses for OMO, 

also obtained from the Austraclear transactions data. The RBA typically carries out OMO at 9.20 am each morning. 

35 For this variable, Austraclear transactions with non-zero considerations that are not part of repos are interpreted as 

outright trades. They are only counted if they occur within two days of the first transaction of the repo. 

36 For each regression reported in this paper, repos that occur through separate transactions but are otherwise virtually 

identical – that is, same counterparties, settlement days, collateral type and interest rate – are aggregated into one 

repo to prevent estimates overweighting these repos. For the other analysis in this paper, aggregation of these repos 

would be less consequential. 
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Equation (2) includes day fixed effects to control for any day-to-day fluctuations in market-wide 

rates. Equation (3) includes day fixed effects and borrower*lender*year fixed effects, focusing on 

variance in rates within borrower-lender pairs each year. For example, if a correlation exists among 

a set of repos that each involve different lenders or borrowers (on the same day), Equation (2) 

would detect it and Equation (3) would not. Equation (3) excludes rate differentials across different 

counterparties, focusing on, for example, whether repos between the same two counterparties have 

higher rates when the loans are larger. Equation (3) is therefore more robust to omitted variable 

bias driven by unobserved characteristics that vary across counterparties. 

Table 9 reports the coefficient estimates. Notable findings are: 

 Consideration: Loan size has a highly significant and positive relationship across both 

specifications. When a loan doubles in size, the rate increases by around 0.8 basis points. Possible 

explanations could include a thinner market for larger loans that tilts market power towards the 

lender, or compensation to the lender for a higher concentration of counterparty risk in that 

borrower. 

 Short sale: Repos appearing to cover short sales (likely to be securities loans) have rates 1.3 basis 

points lower than others. The sign is as expected, with cash providers compensating borrowers 

for receiving the collateral. The dummy is a proxy and may result in underestimates if it also picks 

up repos used for other purposes. 

 Maturities: The Equation (2) estimates are consistent with a term premium, that is, estimated 

rates are higher for longer maturity buckets. However, the Equation (3) estimates reveal that this 

is not true when holding the counterparties constant. 

 Collateral type: SGS repos tend to have a rate around 1 basis point higher than AGS repos. 

Bartolini et al (2011) find a similar but wider disparity in the United States – in data up to 2006, 

rates on repos against Treasury securities are around 5 basis points lower than rates on repos 

against agency securities. Other-debt repos tend to have a rate around 6 basis points lower than 

AGS repos. These repos potentially comprise more securities loans. 

 Futures collateral: These repos have statistically significantly higher rates by 0.7 basis points. This 

is consistent with the arbitrage position discussed in Wakeling and Wilson (2010) and Becker 

et al (2016). Specifically, banks short futures and buy the underlying bonds to take advantage of 

the futures price being above the price of the underlying bonds. Banks can fund the bond 

purchase by borrowing through repos using the bond as collateral, putting upward pressure on 

rates for these repos. 
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Table 9: Interest Rates (Basis Points) Regressed on Loan Characteristics 

2012 to 2015 windows 

 Equation (2) Equation (3) 

Lender’s OMO (IHS, $b)(a) 4.882 –0.536 

 (3.75) (0.47) 

Consideration (log $m) 0.890*** 1.136*** 

 (0.30) (0.20) 

Short sale (D) –2.53 –1.264** 

 (1.66) (0.48) 

Maturity 2–7 days (D) 1.960* 0.262 

 (0.98) (0.33) 

Maturity 8–14 days (D) 2.913** 0.132 

 (1.21) (0.57) 

SGS collateral (D) 1.215** 0.960*** 

 (0.56) (0.32) 

Other-debt collateral (D) –6.136 –6.189* 

 (4.97) (3.34) 

Collateral referenced in futures (D) 0.596 0.704*** 

 (0.38) (0.26) 

Fixed effects day day and borrower*lender*year 

R squared 0.081 0.471 

Number of observations 15 955 15 695 

Notes: *p < 0.1, **p < 0.05, ***p < 0.01; standard errors in parentheses clustered at the lender account level (42 clusters); state 

government entities removed from regressions; D denotes a dummy variable 

 (a) IHS refers to the inverse hyperbolic sine transformation, similar to a log transformation but capable of transforming zeros 

Sources: ASX; Author’s calculations; RBA 

 

5.3 Market Structure in 2015 

In this section I analyse the distribution of counterparty relationships in the repo market. The 

algorithm data identify the borrower and lender to each position. This permits analysis of: a) the 

relative activity of each entity; b) the network of repo positions; and c) how repo rates vary across 

the market network. Since these market characteristics vary over the full sample, I focus on the 

most recent data window comprising September and October 2015. Note that these data do not 

capture repos through foreign infrastructure, which could, for example, add extra links to the market 

network as implied by the algorithm data. 

Because institutions often hold multiple Austraclear accounts, for this section I group accounts into 

‘entities’, combining activity across any accounts held under the same parent company. The 

exception is when the account name indicates it is used on behalf of clients, in which case I label 

that account, grouped together with any other client accounts under the same parent company, as 

being a client entity.37 Two of the client entities include accounts related to ICSDs. Entities other 

                                                      

37 Client accounts are identified by the account name containing ‘nominee’, ‘client’, ‘custodian’ or an abbreviation of any 

of these. 
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than client entities and state governments are classified as domestic or foreign, based on the location 

of their parent company. Intra-entity repos are excluded. 

Figure 9 displays each entity’s share of total repo turnover in 2015, measured as the sum of the 

cash side of all repos in the window regardless of maturity. Each horizontal bar is an entity; the left 

and right panels display that entity’s lending and borrowing turnover respectively. Turnover is highly 

skewed towards a single borrower-lender pair, contributing around half of the total. Aside from this 

pair, the bulk of turnover is distributed across 15 to 20 entities, most of whom both lend and borrow. 

Five of the six most active of these entities are Australian, and most of the remaining activity is by 

foreign and client entities. 

Figure 9: Proportion of Turnover by Entity – 2015 

Entities with less than 0.1% combined turnover omitted 

 

Notes: Algorithm run with 14-day maturity cap; entities ordered by combined borrowing and lending turnover; excludes repos with 

state government entities 

Sources: ASX; Author’s calculations 

Figure 10 illustrates the market as a network. Each node is an entity, coloured by domicile (or client). 

The shape represents its average net overnight position across all counterparties – circles are net 

lenders, squares are net borrowers, and the size of the shape represents the value of their average 

net overnight position (using a nonlinear scale). Each (undirected) edge represents a bilateral 

position, with the thickness representing the total gross value of lending and borrowing between 

that pair (also using a nonlinear scale). 
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Figure 10: Network of Repo Positions – 2015 

Average daily positions within sample window 

 

Notes: Node size represents average overnight position netted across all counterparties; edge width represents average gross 

overnight position between counterparty pair; algorithm run with 14-day maturity cap; excludes repos with state government 

entities 

Sources: ASX; Author’s calculations 

There is a distinct core-periphery split.38 Around a third of entities are ‘periphery’ entities that are 

not linked with each other and have only one or two counterparties. Around two-thirds are ‘core’ 

entities, each with five or more counterparties in the core, plus counterparties in the periphery. The 

core is well integrated; most have more than ten counterparties. On the other hand, if data in this 

sample are representative of the current market structure, periphery entities are somewhat 

segmented and their market access might easily be disrupted if there are problems with their one 

or two core counterparties. The market structure seems inconsistent with core entities’ primary 
                                                      

38 Brassil and Nodari (2018) discuss core-periphery structures in more detail with reference to the Australian unsecured 

interbank market. 
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activity being intermediation for the periphery, given core entities’ relatively large net positions. 

Among the core, the pattern is more consistent with market ‘churn’ related to entities seeking other 

entities with which to offset day-to-day surpluses and deficits in liquidity and securities holdings. 

Repo rates tend to vary across counterparties. Figure 11 plots the estimated difference in rates 

between different lender and borrower types, with 95 per cent confidence intervals, relative to rates 

on repos between Australian lenders and Australian borrowers. Specifically, the coefficients are from 

a re-estimation of Equation (2) on 2015 data with X comprising: eight domicile dummy variables 

representing the nine types of lender-borrower combinations, with loans from Australian lenders to 

Australian borrowers as the baseline; dummies for 2–7 and 8–14 day maturity buckets; and dummies 

for collateral types. Rates are highest for repos from Australian lenders to client borrowers, in line 

with Becker and Rickards’ (2017) explanation that non-residents’ demand for funding has put upward 

pressure on repo rates in recent years. Overall, rates charged by Australian lenders tend to be higher 

than rates charged by other lenders. The lowest rates are from client lenders to foreign borrowers. 

Figure 11: Estimated Repo Rates by Lender and Borrower Types – 2015 

With 95% confidence intervals 

 

Notes: With day fixed effects and other control variables; clustered standard errors 

Sources: ASX; Author’s calculations 
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There is some evidence of collateral rehypothecation in the algorithm data. Potential rehypothecation 

can be identified as instances of an entity receiving collateral as a lender, then using securities of 

the same ISIN as collateral for borrowing later on the same day. Around 5 per cent of the two-

transaction repos detected are followed by potential rehypothecation (after removing overlapping 

instances). 

5.4 Haircuts 

A repo haircut (sometimes called an initial margin) is defined as the proportion by which the collateral 

value exceeds the cash lent: 

 1
market price facevalue

haircut
consideration


   (4) 

Haircuts are intended to keep the lender fully collateralised should the market price of the securities 

move adversely. The data may therefore inform us about how repo counterparties manage their 

risk. Under global conventions, haircuts are higher for securities with more volatile prices, which 

have greater potential to change in price while the repo is open. For current RBA lending in OMO, 

the lowest haircut is 1 per cent, corresponding to AGS and SGS, and the highest haircut is 20 per 

cent, corresponding to asset-backed securities. For securities loans (which likely describes some of 

the detected repos) we may expect haircuts as defined by Equation (4) to be negative. This would 

protect the securities lender, rather than the provider of the cash collateral, against changes in the 

securities price. 

To obtain implied haircuts from the algorithm repo data, the repo dates and collateral ISINs can be 

aligned with data on securities market prices. I do this using the (mid) closing prices each settlement 

day for all AGS and SGS repos in the 2012 to 2015 windows, with data from the RBA and Yieldbroker. 

For multiple-transaction repos, the implied haircut is measured using only the first transaction. 

Market intelligence indicates that some repos are negotiated the day before the first-leg settlement, 

which may result in some misalignment between the repo and securities price data, adding noise to 

the haircut measure I construct. Notwithstanding this, this measure has lower variance than a 

measure that uses securities prices from a day earlier. 

Implied haircuts tend to be scattered around zero – in each window the mean haircut is less than 

0.1 per cent in absolute value (Figure 12). In 2014 and 2015 there are clusters around 1 and 2 per 

cent, which reflect only a small subset of entities. Implied haircuts are often negative. The negative 

haircuts are spread across various counterparties, ISINs and settlement times, and, gauged by the 

incidence of rounded interest rates (discussed in Section 3.3), do not contain a noticeably larger 

proportion of false positives. These may comprise a higher proportion of securities loans. 
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Figure 12: Repo-level Haircuts by First-leg Day and Time 

Using securities’ close prices 

 

Note: Algorithm run with 14-day maturity cap 

Sources: ASX; Author’s calculations; RBA; Yieldbroker 

To further investigate implied haircut patterns I regress Equations (2) and (3) from Section 5.2 

replacing ratei with haircuti and limiting the sample to AGS and SGS repos between 2012 and 2015. 

I use the same explanatory variables X, but also include the repo rate in basis points. If haircuts 

represent value to the lender and a cost to the borrower, we may expect a negative relationship 

with repo rates, as counterparties negotiate by raising one and lowering the other. To lenders, higher 

haircuts reduce counterparty risk and temporarily increase liquid asset holdings. To borrowers, 

haircuts may represent the cost of capital for securities financing, being the gap between the funds 

obtained by borrowing against the security and the funds required to purchase it (e.g. Ashcraft, 

Gârleanu and Pedersen 2011). 

Table 10 reports the estimates. Of the 16 reported coefficients, 1 is significant at 90 per cent 

confidence, therefore likely a type I error.39 There is no significant relationship between haircuts and 

repo rates, indicating they are not simultaneously negotiated. The coefficient on the short sale 

dummy is also not significant, which is at odds with the notion that the negative haircuts correspond 

to securities loans. 

                                                      

39 A confidence level of 90 per cent means that for every ten null hypotheses that are true, we would expect to falsely 

reject one of them. 
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Table 10: Haircuts (Percentage Points) Regressed on Loan Characteristics 

2012 to 2015 windows 

 Equation (2) Equation (3) 

Repo rate (bps) 0.078 

(0.38) 

0.060 

(0.08) 

Lender’s OMO (IHS, $b)(a) 0.014 

(0.04) 

0.006 

(0.04) 

Consideration (log $m) 0.038 

(0.03) 

–0.001 

(0.00) 

Short sale (D) –0.015 

(0.03) 

–0.009 

(0.01) 

Maturity 2–7 days (D) –0.021 

(0.05) 

0.026* 

(0.01) 

Maturity 8–14 days (D) –0.011 

(0.04) 

0.011 

(0.02) 

SGS collateral (D) –0.022 

(0.02) 

0.014 

(0.01) 

Collateral referenced in futures (D) 

 

–0.020 

(0.02) 

0.011 

(0.04) 

Fixed effects day day and borrower*lender*year 

R squared 0.143 0.537 

Number of observations 14 858 14 596 

Notes: *p < 0.1, **p < 0.05, ***p < 0.01; standard errors in parentheses clustered at the lender account level (42 clusters); state 

government entities and haircuts above 5 per cent in absolute value removed from regressions; D denotes a dummy variable 

 (a) IHS refers to the inverse hyperbolic sine transformation, similar to a log transformation but capable of transforming zeros 

Sources: ASX; Author’s calculations; RBA 

 

5.5 Intraday Timing Patterns in 2015 

The algorithm data also provide detailed information on the intraday timing of interbank repo 

settlements. Importantly, the algorithm data contain the transactions’ settlement times, which could 

differ from the times at which the counterparties negotiated the repos. As discussed in the previous 

section, some repos are likely negotiated the day before settlement. 

Figure 13 illustrates the variance in repo volumes, values, spreads and maturities within an average 

day in the 2015 window. Some relatively low-value repos tend to occur in the early morning. A drop 

in volume and value occurs around 4.30 pm. Brassil et al (2016) show that unsecured lending peaks 

during the ‘close’ session between 4.30 pm and 5.15 pm, when banks acquire information on how 

the processing of SWIFT customer payments has affected their liquidity position. Given their findings, 

Figure 13 indicates a substitution from the repo to the unsecured market at this time, and the pick-

up in repo values between 4.30 pm and 5.30 pm may reflect entities turning back to the repo market 

to find funds not sourced in the unsecured market. 
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Average spreads rise throughout the day, although the pattern is not robust after controlling for 

other variables such as lender and borrower characteristics. The pick-up in spreads after 6 pm is 

driven by a small number of repos and potentially not representative of the overall market. Average 

maturities decline gradually from 4.5 days around 9 am to 1 day after 6 pm. Consistent with the 

discussion in the previous paragraph, this could be indicative of early market activity being driven 

by predictable funding needs, and late activity comprising more short-term needs resulting from 

unexpected liquidity imbalances. 

Figure 13: Intraday First-leg Activity – 2015 

15-minute intervals 

 

Notes: September and October only; algorithm run with 14-day maturity cap; repos with more than two transactions or spanning 

policy decisions excluded; one high turnover borrower-lender pair excluded 

 (a) Average of residuals from regressing spreads on maturity and dummies for day, security type (AGS, SGS and other) and 

borrower-lender pairs 

Sources: ASX; Author’s calculations; RBA 
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6. Conclusion 

This paper provides an algorithm for extracting loan-level repo data from securities transactions data 

and uses the algorithm for a preliminary loan-level analysis of the Australian repo market. Related 

algorithms are commonly used for loan-level analysis of unsecured interbank markets around the 

world. Yet, until now, there has been little access to loan-level data on repo markets. 

Assessment of the algorithm indicates that around 97 per cent of the detected loans are actual 

repos. The algorithm data detect a smaller market than reported in prudential data, likely in part 

reflecting repos with offshore entities that are reported to the prudential regulator but do not appear 

in the transactions data. Correlations between the two datasets are around 0.5. 

I also provide the first analysis of the Australian repo market microstructure, covering several two-

month samples between 2006 and 2015. Over these years the market size grew, the distribution of 

interest rates drifted up and tightened, and there was a shift towards shorter maturities. Interest 

rates tend to depend on loan size and the types of counterparties, but not maturity. In 2015, turnover 

is skewed towards a highly active pair, and the market network structure is split between a tightly 

integrated core and a segmented periphery that each deal with only one or two counterparties. Repo 

haircuts do not display obvious patterns, appearing randomly distributed around zero. 
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