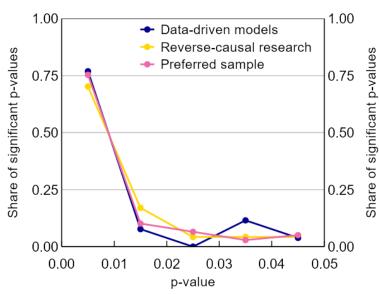
Online Appendix: Star Wars at Central Banks

Adam Gorajek*, Joel Bank*, Andrew Staib**, Benjamin Malin*** and Hamish Fitchett****


*Reserve Bank of Australia **School of Economics, University of New South Wales ***Federal Reserve Bank of Minneapolis ****Reserve Bank of New Zealand

February 2021

This appendix provides additional information to accompany Research Discussion Paper No 2021-02.

1. Extra Analysis for the p-curve

We find no statistical evidence of researcher bias in all of the subsamples we assess using the p-curve. In each case the p-curve decreases over p (Figure A1).

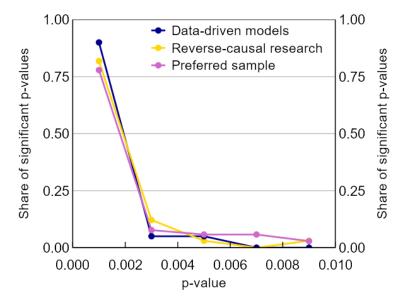


Figure A1: Central Bank p-curve Subgroups

Sources: Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand

We also construct p-curves for these subgroups on a narrower window of significant results (p < 0.01) to account for the possibility of aggressive researcher bias. Simonsohn, Simmons and Nelson (2015) explain that if researcher bias is aggressive, in that it pushes results well beyond the 5 per cent significant threshold, the identifying assumptions of the p-curve are invalidated. To handle this possibility, they propose focusing on a narrower window of significant results. The results are the same (Figure A2).

Figure A2: Central Bank p-curve Assessments Using Narrow Window

Sources: Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand

Unsurprisingly, for our two main samples, we fail to formally reject the null of a uniform p-curve against the one-sided alternative that it slopes upwards (Table A1; we include this trivial result only because it was in our plan).

Table A1: Formal p-curve Results Tests for left skew					
	Centra	Central bank		Top journals	
_	p = [0.00, 0.05]	p = [0.00, 0.01]	p = [0.00, 0.05]	p = [0.00, 0.01]	
z-score	-48.45	-50.90	-74.99	-78.52	
Degrees of freedom	185	137	623	445	
p-value	1	1	1	1	
commonly us chi-squared t		lysis hypothesis tests. Our p	pre-analysis plan erroneously	y labels the method as a	
Sources: Authors' calc of New Zeala	ulations; Brodeur <i>et al</i> (2016 nd); Federal Reserve Bank of N	4inneapolis; Reserve Bank o	f Australia; Reserve Bank	

2. Extra Analysis for the z-curve

To understand these extra figures deeply, we recommend reading Brodeur et al (2016) in detail. The body of our paper outlines only the intuition of their method, in 4 main steps. Below we include which of those steps each analysis relates to. We have changed some of the figure labels to make those relationships clearer.

For the 3 central banks taken together, the sample form of P[z] disseminated] for z larger than 5 suggests several plausible options for bias-free P[z] (Figure A3; these panels relate to Step 2 of the z-curve).

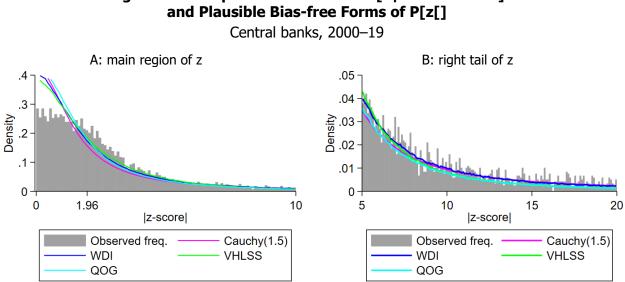
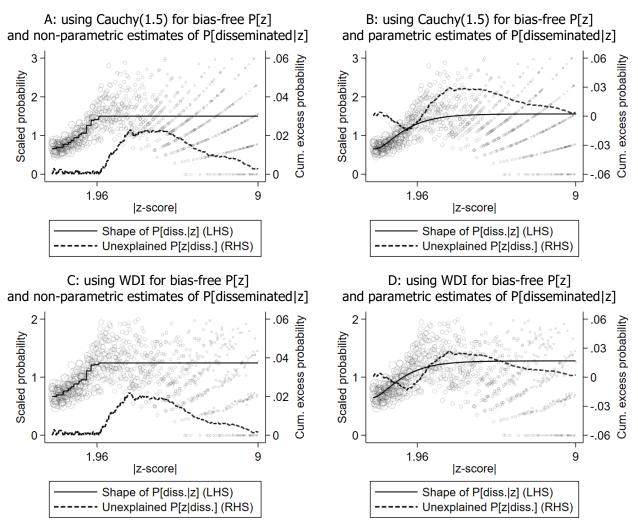
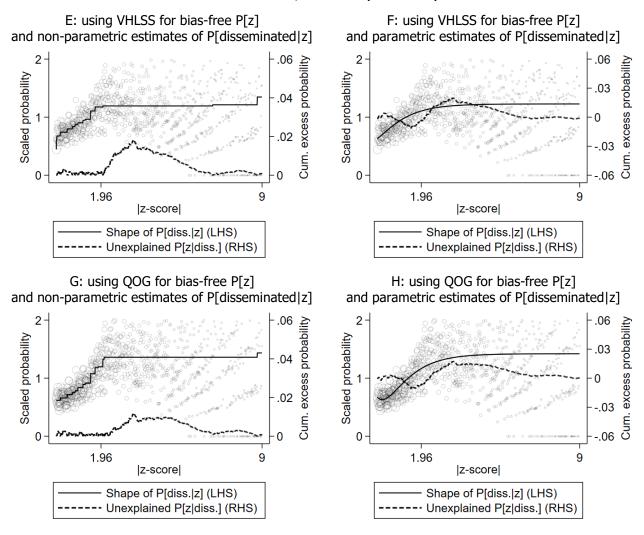


Figure A3: Sample Distributions of P[z|disseminated]


Notes: Bars are frequencies of the absolute values of de-rounded t-statistics (very close to z-score equivalents) for results that are the subject of a comment in the main text of a paper. Based on the right tail of distribution, there are many potential candidates for bias-free forms of P[z].

Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand Sources:

All options for bias-free P[z] generate similar amounts of unexplained variation in observed P[z|disseminated]; the cumulated residuals peak soon after the 5 per cent significance threshold and have peaks of similar heights (Figure A4; these panels relate to Steps 3 and 4 of the z-curve method). The results are insensitive to whether we estimate the shape of P[disseminated|z] parametrically or non-parametrically.


Figure A4: Unexplained Variation in P[z|disseminated] and Our Estimates for P[disseminated|z]

Central banks, 2000–19 (continued next page)

Figure A4: Unexplained Variation in P[z|disseminated] and Our Estimates for P[disseminated|z]

Central banks, 2000–19 (continued)

Notes: We present a scaled probability for the shape of P[disseminated|z] because we do not account for the normalising constant we dropped from Bayes' rule (so as to follow Brodeur *et al* (2016) closely). Our estimates would require a linear transformation before they can be interpreted as probablilities.

Sources: Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand

We had planned to produce z-curves for several subsamples not already presented in the paper (Figure A5). The sample sizes for several of these are quite small.

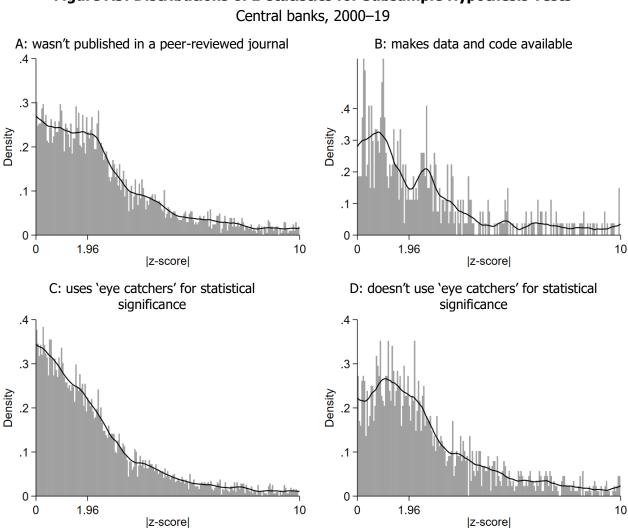
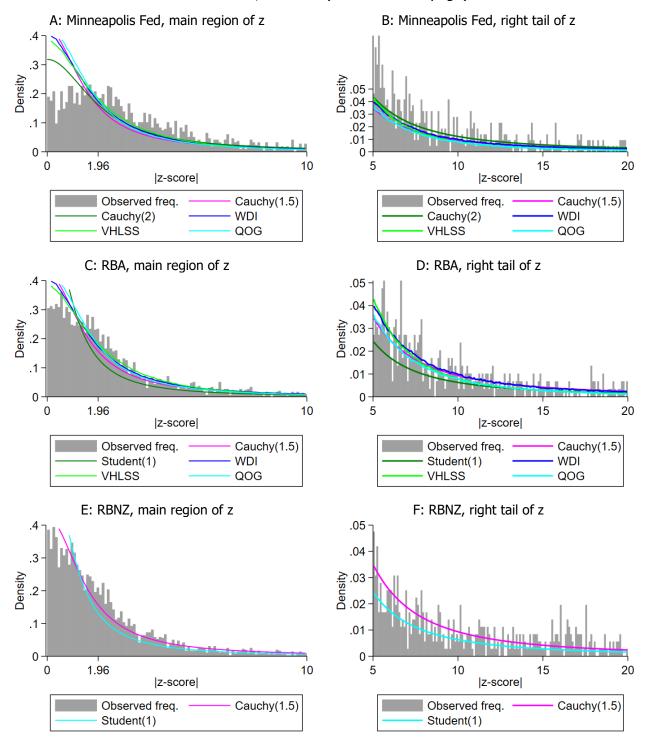
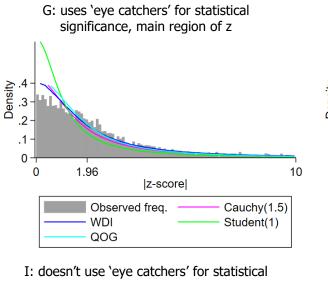


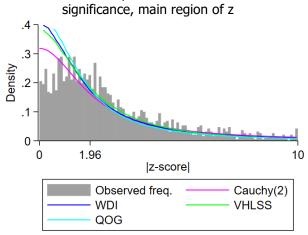
Figure A5: Distributions of z-statistics for Subsample Hypothesis Tests

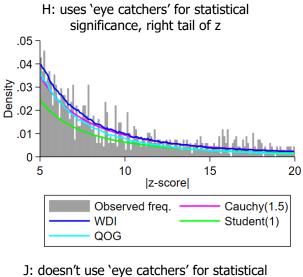

Notes: Plotted are the absolute values of de-rounded *t*-statistics (very close to z-score equivalents) for results that are the subject of a comment in the main text of a paper. We have also excluded results that come from data-driven model selection techniques or reverse causal research.

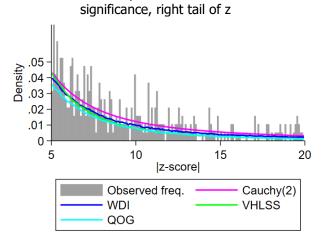
Sources: Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand

For all of our different subsamples (not just the ones shown above), the distribution of P[z|disseminated] for z larger than 5 suggests several plausible options for bias-free forms of P[z] (Figure A6; these panels relate to Step 2 of the z-curve method). The different subsamples don't all suggest the same bias-free forms of P[z].


Figure A6: Observed Distributions of P[z|disseminated] and Plausible Bias-free Forms of P[z]


Central banks, 2000–19 (continued next page)




Figure A6: Observed Distributions of P[z|disseminated] and Plausible Bias-free Forms of P[z]

Central banks, 2000–19 (continued next page)

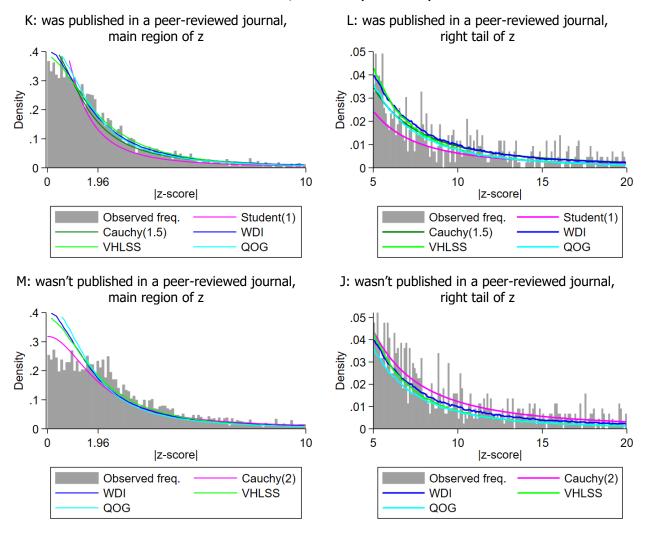
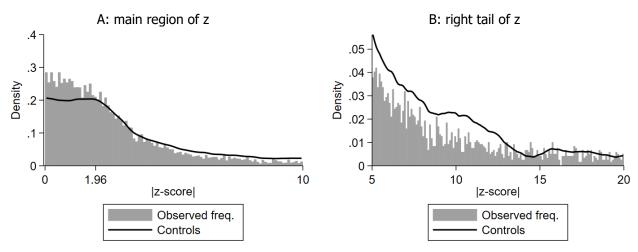


Figure A6: Observed Distributions of P[z|disseminated] and Plausible Bias-free Forms of P[z]

Central banks, 2000–19 (continued)


Notes: Bars are frequencies of the absolute values of de-rounded *t*-statistics (very close to z-score equivalents) for results that are the subject of a comment in the main text of a paper. We have also excluded results that come from data-driven model selection techniques or reverse causal research. Based on the right tail of the distributions, there are many potential candidates for bias-free forms of P[z]. The subsamples don't all suggest the same bias-free forms of P[z].

Sources: Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand

We had planned to use the controls as a sensible candidate for bias-free P[z]. In the end, however, the distribution of controls turned out to have far too much mass in the tails to meet the informal criteria in Step 2 of the z-curve method. The problem is so extreme that for insignificant z, P[z] is higher than P[z|disseminated], generating a maximum excess of results at low z (Figure A7). We find this result to be nonsense, and worry that it stems from our small sample size.

Central banks, 2000-19

Notes: Bars are frequencies of the absolute values of de-rounded *t*-statistics (very close to z-score equivalents) for results that are the subject of a comment in the main text of a paper. The line curve is a kernel density for the corresponding test statistics on control variables. The distribution of controls has too much mass in the tails to meet the informal criteria in Step 2 of the z-curve method.

Sources: Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand

The subsamples all produce similar formal z-curve findings, but the results are not robust to sensible choices of bias-free P[z] (Table A2; these results relate to Step 4 of the z-curve method).

Subsample	Input function	Maximum cumulated residual		
	used	Non-parametric estimate of P[disseminated z]	Parametric estimate of P[disseminated z]	
Minneapolis Fed	Cauchy(1.5)	2.0	1.6	
	Cauchy(2)	2.3	2.6	
	WDI	1.6	1.1	
	VHLSS	1.2	0.0	
	QOG	1.2	0.2	
RBA	Cauchy(1.5)	2.9	3.0	
	Student(1)	1.4	2.5	
	WDI	3.1	2.7	
	VHLSS	3.1	2.0	
	QOG	1.7	1.8	
RBNZ	Cauchy(1.5)	3.3	3.2	
	Student(1)	2.3	2.8	
Published in a journal	Cauchy(1.5)	2.6	2.4	
	Student(1)	1.4	2.1	
	WDI	2.8	2.1	
	VHLSS	3.0	1.5	
	QOG	1.4	1.4	
lot published in a journal	Cauchy(2)	2.9	3.1	
	WDI	1.2	1.9	
	VHLSS	1.2	1.5	
	QOG	0.8	0.9	
Jses 'eye catchers'	Cauchy(1.5)	2.0	2.5	
	Student(1)	1.2	1.9	
	WDI	2.0	2.2	
	VHLSS	1.7	1.5	
	QOG	0.9	1.4	
oesn't use 'eye catchers'	Cauchy(2)	2.3	2.5	
	WDI	1.3	1.7	
	VHLSS	1.5	1.5	
	QOG	1.1	0.8	

 Table A2: Formal z-curve Results for Central Bank Subsamples

Notes:The number 2.0 in the first column of data reads as 'there is an unexplained excess of just-significant results that amounts
to 2.0 per cent of all results'. The z-curve method attributes this excess to researcher bias. The different subsamples all
produce similar formal z-curve findings. The assumed distributions for bias-free P[z] does matter somewhat though.Sources:Authors' calculations; Federal Reserve Bank of Minneapolis; Reserve Bank of Australia; Reserve Bank of New Zealand

References

Brodeur A, M Lé, M Sangnier and Y Zylberberg (2016), 'Star Wars: The Empirics Strike Back', *American Economic Journal: Applied Economics*, 8(1), pp 1–32.

Kim SC, SJ Lee, WJ Lee, YN Yum, JH Kim, S Sohn, JH Park, J Lee, J Lim and SW Kwon (2013), 'Stouffer's Test in a Large Scale Simultaneous Hypothesis Testing, *PLoS One*, 8(5), e63290.

Simonsohn U, JP Simmons and LD Nelson (2015), 'Better *P*-curves: Making *P*-curve Analysis More Robust to Errors, Fraud, and Ambitious *P*-hacking, a Reply to Ulrich and Miller (2015)', *Journal of Experimental Psychology: General*, 144(6), pp 1146–1152.