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Abstract 

Policymakers are often interested in the degree to which changes in prices are driven by shocks to 

supply or demand. One way to estimate the contributions of these shocks is with a structural vector 
autoregression identified using sign restrictions on the slopes of demand and supply curves. The 

appeal of this approach is that it relies on uncontroversial assumptions. However, sign restrictions 

only identify decompositions up to a set. I characterise the conditions under which these sets 

are informative, examining both historical decompositions (contributions to outcomes) and forecast 
error variance decompositions (contributions to variances). I use this framework to estimate the 

contributions of supply and demand shocks to inflation in the United States. While the sign restrictions 

yield sharp conclusions about the drivers of inflation in some expenditure categories, they tend to 

yield uninformative decompositions of aggregate inflation. A ‘bottom-up’ decomposition of aggregate 

inflation is less informative than a decomposition that uses the aggregate data directly. 

JEL Classification Numbers: C32, E31, E32 

Keywords: forecast error variance decomposition, historical decomposition, set identification, sign 

restrictions, structural vector autoregression 



Table of Contents 

1. Introduction 1 

2. SVAR and Decompositions 4 

2.1 SVAR and orthogonal reduced form 4 

2.2 Historical decomposition 5 

2.3 Forecast error variance decomposition 6 

3. What Do Sign Restrictions Tell Us about Decompositions? 6 

3.1 Sign restrictions and identified sets 7 

3.2 Historical decomposition 9 

3.2.1 Computation 10 

3.2.2 A special case 10 

3.3 Forecast error variance decomposition 13 

3.3.1 A special case 13 

4. Supply-demand Decompositions of US Inflation 14 

4.1 An aggregate decomposition 14 

4.1.1 Robustness 16 

4.2 Disaggregated decompositions 18 

5. Conclusion 22 

Appendix A: Inference about Decompositions 23 

Appendix B: Additional Empirical Results 25 

References 26 





1. Introduction 

Economists are often interested in decomposing changes in prices or quantities into contributions 

from shocks to supply or demand. To give a prominent example, there has been great interest in 

understanding how much of the surge (and subsequent decline) in inflation in many economies 

post COVID-19 was due to supply or demand factors.1 Understanding the supply-demand composition 

of inflation is important in this context because the desired policy response may depend on the nature 

of the underlying shocks. 

One common approach to decomposing changes in variables into contributions from different shocks 

is to estimate a structural vector autoregression (SVAR). Within this framework, disentangling the 

contributions of shocks requires making identifying assumptions. When interest is in decomposing 

changes in prices and quantities into contributions from supply and demand shocks, one such 

set of assumptions is to impose sign restrictions on the slopes of supply and demand curves or, 
equivalently, on the responses of prices and quantities to supply and demand shocks.2 Economic 

theory typically implies that supply curves are upward sloping and demand curves are downward 

sloping or, equivalently, that supply shocks move prices and quantities in opposite directions, while 

demand shocks move them in the same direction. Hence, the main appeal of these restrictions is 

that they are uncontroversial. There is, however, a cost associated with relying on these relatively 

weak assumptions – the sign restrictions only identify a set (or range) of structural parameters, such 

as the slopes of the demand and supply curves (i.e. they are ‘set identifying’). In other words, there 

are many combinations of supply and demand curves that could explain the observed data and that 
are consistent with the sign restrictions. In turn, this implies that the sign restrictions can – on their 
own – only be used to recover a set of shock contributions or decompositions. 

In this paper, I characterise the informativeness of sign restrictions when attempting to quantify 

the contributions of supply and demand shocks to variation in prices. I answer the question: under 
what conditions do these sign restrictions yield economically (un)informative decompositions of price 

changes? Answering this question is important because – as I discuss below – researchers have 

been relying on these sign restrictions when estimating the drivers of inflation. I focus on two types 

of decomposition. The first is the historical decomposition, which is the contribution of a particular 
shock to the realisation of a particular variable (or its forecast error) in a given period. For example, 
the historical decomposition can be used to quantify the role of supply shocks in driving the post-
pandemic increase in US inflation. The second is the forecast error variance decomposition (FEVD), 
which is the contribution of shocks to forecast error variances. To give an example, the FEVD can be 

used to quantify the importance of supply shocks in driving unexpected variation in inflation over a 

specific forecast horizon (e.g. two years) on average over time. 

This paper builds on and complements existing analyses of the use of sign restrictions in identifying 

supply-demand systems. In the SVAR context, Uhlig (2017) discusses the use of sign restrictions to 

identify the slopes of supply and demand curves given data on prices and quantities. Leamer (1981) 
contains a similar discussion in the context of maximum likelihood estimation of simultaneous 

equation systems subject to inequality constraints. Baumeister and Hamilton (2015) use a model 

1 Examples in the US context include Ball, Leigh and Mishra (2022), Eickmeier and Hofmann (2022), Blanchard and 
Bernanke (2023), Gordon and Clark (2023), Bai et al (2024), Rubbo (2024) and Beaudry, Hou and Portier (forthcoming). 

2 Following Uhlig (2005), sign restrictions are widely used in the broader SVAR literature. 



2 

of supply and demand to illustrate the role that the commonly used ‘uniform’ prior plays in driving 

Bayesian posterior inference when SVARs are identified using sign restrictions. The setting of my 

analysis is similar – a bivariate VAR in prices and quantities identified with sign restrictions on the 

slopes of supply and demand curves – but I focus on FEVDs and historical decompositions as the 

quantities of interest. While Baumeister and Hamilton (2015) and Uhlig (2017) use the bivariate model 
as a ‘toy’ example to illustrate issues associated with the use of sign restrictions, my focus on this 

model is motivated by its recent use empirically (as discussed below). The problem of disentangling 

supply and demand from data on prices and quantities is also well-studied outside of the SVAR 

literature and in fact was the motivating problem in the development of the instrumental variables 

estimator in the 1920s (e.g. Stock and Trebbi 2003).3 

I explain that the informativeness of sign restrictions about supply-demand decompositions depends 

on the reduced-form correlation between price and quantity forecast errors. When this correlation 

is strong, the sign restrictions can allow us to draw relatively unambiguous conclusions about the 

contributions of shocks (in the sense that the sets of decompositions are narrow). In contrast, when 

this correlation is weak, the sign restrictions do not reveal much about which shock is driving variation. 
In the case of historical decompositions, whether the restrictions are informative also depends on 

the realisations of the data (or forecast errors) in the periods under consideration. 

Ultimately, because the informativeness of the sign restrictions depends on features of the data, 
whether they allow us to draw sharp conclusions about the contributions of shocks will depend on 

the empirical application at hand. I estimate the contributions of supply and demand shocks to price 

changes in two settings. 

First, I use aggregate data to estimate the contributions of aggregate supply shocks to US inflation. 
I follow Chang, Jansen and Pagliacci (2023) by using an SVAR that includes growth in the GDP 

deflator and real GDP. The SVAR is identified with sign restrictions on the slopes of aggregate supply 

and demand curves. Bergholt, Furlanetto and Vaccaro-Grange (2023), Bergholt et al (2024) and 

Giannone and Primiceri (2024) use similar models to estimate historical decompositions and/or FEVDs 

of inflation.4 A feature of these papers is that, loosely speaking, they work with a single decomposition 

chosen from the set of decompositions that are consistent with the data and identifying restrictions. 
It is therefore unclear to what extent results are driven by the selection of a single, arguably arbitrary, 
decomposition; there are many other decompositions that are equally consistent with the identifying 

restrictions and the observed data.5 Instead, I directly estimate sets of decompositions that are 

3 Plagborg-Møller and Wolf (2022) examine identification of decompositions – including FEVDs and historical 
decompositions – in a structural vector moving average model when there is an instrument available for the shock 
of interest. Set identification of decompositions arises in their framework when shocks are not recoverable from leads 
and lags of the data. 

4 Calvert Jump and Kohler (2022) and Bergholt et al (2023) use the textbook three-equation New Keynesian model to 
motivate sign restrictions on the slopes of aggregate supply and demand curves in SVARs containing inflation and output. 

5 Chang et al (2023) use an algorithm from Rubio-Ramírez, Waggoner and Zha (2010) to draw from a uniform distribution 
over the space of orthonormal matrices in the SVAR’s orthogonal reduced form. They then choose a single model – 
and thus a single historical decomposition – using the ‘median target’ criterion described in Fry and Pagan (2011). 
Bergholt et al (2023) use the same algorithm to draw orthonormal matrices, but report posterior medians of the 
decompositions at each horizon (for the FEVD) or time period (for the historical decomposition). An alternative framing 
of this problem is that, because the SVAR is set identified, the decompositions may be sensitive to the choice of uniform 
prior distribution for the orthonormal matrix (e.g. Baumeister and Hamilton 2015; Giacomini and Kitagawa 2021). 
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consistent with the sign restrictions. These sets transparently reflect what we can learn about the 

contributions of aggregate supply and demand shocks to inflation given the sign restrictions. 

The estimated sets for the FEVD imply that aggregate supply shocks account for between zero and 

80 per cent of the variance of one-step-ahead forecast errors, and between 20 and 60 per cent of 
the variance of forecast errors at longer horizons. Estimates of the historical decomposition suggest 
that supply shocks made a substantial contribution to the post-pandemic increase in inflation; for 
example, supply shocks are estimated to have contributed between 1.3 and 3.4 percentage points to 

year-ended growth in the GDP deflator in mid-2022. However, we cannot unambiguously conclude 

whether the increase was predominantly driven by supply or demand shocks. Moreover, the results are 

sensitive to whether the COVID-19 period is included in the sample used to estimate the reduced-
form parameters; when the COVID-19 period is excluded, the reduced-form correlation between 

forecast errors in inflation and real GDP growth is close to zero, and the sign restrictions are largely 

uninformative about the drivers of inflation. 

Second, I conduct an exercise based on disaggregated data that is motivated by an influential 
decomposition proposed by Shapiro (2022).6 He estimates separate VARs for different expenditure 

categories of goods and services making up the personal consumption expenditures (PCE) basket and 

computes one-step-ahead forecast errors. Given sign restrictions on slopes of supply and demand 

curves, if the forecast errors have the same sign, a demand shock must have occurred, and inflation 

in that category is classified as ‘demand driven’. If the forecast errors have opposite signs, a supply 

shock must have occurred, and inflation in that category is classified as ‘supply driven’. He then 

takes an expenditure-weighted average of inflation in supply- and demand-driven categories to 

arrive at a supply-demand decomposition of aggregate inflation. A feature of this approach is that it 
allocates the entirety of inflation in each category to either a supply or demand shock and ignores the 

contributions of lagged shocks and deterministic terms. Instead, I use the historical decomposition 

to directly quantify the contributions of supply shocks to realised inflation within each expenditure 

category. The exercise therefore sheds light on the extent to which the sign restrictions underlying the 

decomposition in Shapiro (2022) are informative about the drivers of inflation in different expenditure 

categories. 

I find that the sign restrictions are largely uninformative about the drivers of inflation in most 
expenditure categories and time periods, with some exceptions. To give an example, the sign 

restrictions deliver sharp decompositions of inflation in ‘food produced and consumed on farms’. 
Intuitively, this is because there is an extremely strong negative correlation between innovations in 

prices and quantities in this expenditure category, so changes in prices and quantities trace out a 

short-run demand curve and most variation is evidently due to supply shocks. To assess whether 
the disaggregated data help identify the drivers of aggregate inflation, I construct a ‘bottom-up’ 
decomposition of aggregate PCE inflation and compare it against the decomposition obtained when 

using the aggregate data directly. I find that the bottom-up decomposition tends to be substantially 

6 This approach has informed policymakers’ assessments of the US economic outlook (e.g. Kugler 2024). It has also been 
applied in a variety of other settings. Adjemian, Li and Jo (2023) use it to decompose US food price inflation. Applications 
to other economies include Gonçalves and Koester (2022) for the euro area, Beckers, Hambur and Williams (2023) for 
Australia, Chen and Tombe (2023) for Canada and Firat and Hao (2023) for a range of economies. Boissay et al (2023) 
estimate state-dependent effects of monetary policy on financial stress, where effects depend on whether inflation is 
supply or demand driven. 
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less informative than the aggregate decomposition, in the sense that the set of values for the 

contribution of supply shocks tends to be much wider. 

Overall, these exercises suggest that assumptions about the signs of the slopes of supply and demand 

curves – on their own – may not deliver unambiguous conclusions about whether price changes are 

driven by shocks to supply or demand. This is the case when decomposing US inflation. Any additional 
assumptions inherent in selecting a single model or decomposition are likely to have a strong influence 

on inferences about the contributions of shocks, and these inferences may not be robust to relaxing 

or perturbing these additional assumptions.7 

Outline. I describe the SVAR, historical decomposition and FEVD in Section 2 before discussing the 

factors that influence how informative sign restrictions are about these decompositions in Section 3. 
The insights from this discussion are applied in Section 4, where I estimate the contributions of supply 

and demand shocks to US inflation. Readers purely interested in the empirical exercises can skip to 

Section 4. Section 5 concludes. 

Notation. I will make use of the following notation in the paper. Vectors and matrices are in bold. For 
a matrix X, vec(X) is the vectorisation of X, which stacks the columns of X into a vector. vech(X) 
is the half-vectorisation of X, which stacks the elements of X that lie on or below the diagonal into 

a vector. ei is the ith column of the 2 × 2 identity matrix, I2. 

2. SVAR and Decompositions 

This section describes a bivariate SVAR in prices and quantities, outlines a convenient alternative 

parameterisation of the model and introduces the structural objects of interest, including the FEVD 

and historical decomposition. 

2.1 SVAR and orthogonal reduced form 

′ Assume that yt = (pt ,qt ) contains data on prices pt and quantities qt , and is generated by the 

SVAR(p) process: 
A0yt = A+xt + ε t (1) 

′ ′ ′ where: A0 is an invertible matrix with non-negative diagonal elements; xt = (yt−1, . . . , yt−p) stacks 
′ the p lags of yt ; A+ = (A1, . . . ,Ap) contains the structural coefficients on xt ; and ε t = (ε1t ,ε2t ) are 

the structural shocks, which have zero mean and identity variance-covariance matrix. For simplicity, 
I abstract from the inclusion of deterministic terms (e.g. a constant). 

When the SVAR is set identified, it is convenient to work in the model’s ‘orthogonal reduced-form’ 
parameterisation (e.g. Arias, Rubio-Ramírez and Waggoner 2018): 

yt = Bxt + ΣtrQε t (2) 

where: B = (B1, . . . ,Bp) is a matrix of reduced-form coefficients; Σtr is the lower-triangular Cholesky 
′ ′ factor of the reduced-form innovation variance-covariance matrix Σ = E(ut ut ) with ut = (upt ,uqt ) = 

yt − Bxt ; and Q is an orthonormal matrix in the space of 2 × 2 orthonormal matrices, O(2). 

7 In a similar spirit to Shapiro (2022), Braun, Flaaen and Hacıoğlu Hoke (2024) use sign restrictions in industry-level SVARs 
to decompose manufacturing producer price inflation; however, they bring additional identifying information to bear by 
requiring that identified shocks are strongly correlated with survey-based measures of supply and demand pressures. 
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′ ′ ′ Let ϕ = (vec(B) ,vech(Σtr) ) collect the reduced-form parameters. The two parameterisations are 
′ related by B = A−1A+, Σ = A−1(A−1) and Q = Σ−1A−1 .0 0 0 tr 0 

In the absence of identifying restrictions, any orthonormal matrix Q is consistent with the second 

moments of the data, which are summarised by ϕ . In this sense, Q is set identified and hence so 

are the structural parameters (A0,A+) (e.g. Uhlig 2005). Imposing sign restrictions restricts the 

values of Q that are consistent with a given value of ϕ ; the set of such values is an ‘identified 

set’ (e.g. Baumeister and Hamilton 2015; Gafarov, Meier and Montiel Olea 2018; Giacomini and 

Kitagawa 2021). An identified set for Q will induce identified sets for other parameters that are 

functions of the structural parameters. 

Assume that the reduced-form parameters are such that the vector moving average (VMA(∞)) 
representation of the model exists:8 

∞∑ 
yt = Ch ΣtrQε t−h (3) 

h=0 ∑min{h,p}where Ch are the reduced-form impulse responses, defined by Ch = BlCh−l for h ≥ 1 withl=1 
C0 = I2. Element (i, j) of Ch ΣtrQ is the horizon-h impulse response of variable i to structural shock 

′ ′ ′ j, denoted by ηi, j,h(ϕ ,Q) = cih(ϕ)q j, where cih(ϕ) = eiCh Σtr is row i of Ch Σtr and q j = Qe j is 

column j of Q. While not the focus of this paper, the impulse responses are useful for understanding 

the decompositions that are of central interest. 

2.2 Historical decomposition 

The historical decomposition is the cumulative contribution of a particular shock to the 

unexpected change (i.e. forecast error) in a variable over some horizon (e.g. Antolín-Díaz and 

Rubio-Ramírez 2018; Baumeister and Hamilton 2018). Specifically, let Hi, j,t,t+h be the contribution of 
the jth shock to the unexpected change in the ith variable between periods t and t + h: ( { } ) ( )

Hi, j,t,t+h = E yi,t+h| ε j,τ t≤τ≤t+h 
,{yτ }−∞<τ<t − E yi,t+h|{yτ }−∞<τ≤t−1 (4) 

h∑ ′ = ηi, j,l(ϕ ,Q)e j ε t+h−l (5) 
l=0 

h∑ ′ ′ = cil(ϕ)q jq j Σtr 
−1ut+h−l (6) 

l=0 

Equation (5) shows that the historical decomposition is obtained by multiplying the realisations of the 

structural shocks and the impulse responses to those shocks. Equation (6) represents the historical 
decomposition in terms of the reduced-form innovations rather than the structural shocks themselves; 
this representation is useful, because the reduced-form innovations are what we can recover from the 

data given knowledge of the reduced-form parameters.9 To give an example, when h = 0 and i = 1, 
the historical decomposition represents the contribution of shock j to the one-step-ahead forecast 
error in pt . 

8 This representation exists if the eigenvalues of the VAR ‘companion matrix’ lie inside the unit circle (e.g. Hamilton 1994; 
Kilian and Lütkepohl 2017). 

Σ−1 ′ ′ 
j Σ

−19 Since εt = A0ut = Q ′ tr ut , structural shock j is e j εt = q tr ut . 
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Kilian and Lütkepohl (2017) define the historical decomposition as the cumulative contribution of all 
past realisations of a particular shock to the realisation of a particular variable in some period (see also 

Plagborg-Møller and Wolf (2022) or Bergholt et al (2024)). Following from the VMA(∞) representation∑∞ ′ in Equation (3), the contribution of shock j to the realisation of yit is l=0 cil(ϕ)q jε j,t−l. Given a 

finite time series, this infinite sum must be truncated at l = t − 1; intuitively, we cannot completely 

apportion the realisation of yit to supply and demand shocks, since the realisation of yit will also 

reflect the effects of shocks that occurred before the beginning of the sample (i.e. ‘initial conditions’), 
though these effects should tend to vanish over time. In terms of Equation (5), this definition of the∑ 
historical decomposition corresponds to Hi, j,1,t . The difference between yit and j Hi, j,1,t represents 

the contributions of initial conditions and any deterministic terms (e.g. a constant), which I have thus 

far abstracted from but will feature in the empirical exercises. ∑ ∑h ′ It is straightforward to show that j Hi, j,t,t+h = l=0 eiClut+h−l, which is the (h + 1)-step-ahead 

forecast error in variable i. In the two-variable setting, knowledge of the contribution of one shock to 

the (h + 1)-step-ahead forecast error means that we also know the contribution of the other shock. 
In what follows, I therefore focus on the contribution of the first shock to the forecast error in the 

first variable (pt ) as the object of interest, and denote this by Ht,t+h ≡ H1,1,t,t+h. 

2.3 Forecast error variance decomposition 

The FEVD of variable i at horizon h with respect to shock j is the cumulative contribution of the 

shock to the horizon-h forecast error variance (FEV) of variable i, expressed as a fraction of the 

horizon-h FEV (e.g. Kilian and Lütkepohl 2017; Baumeister and Hamilton 2018; Plagborg-Møller and 

Wolf 2022): ( { } )
Var yi,t+h|{yτ }−∞<τ<t , ε j,τ t≤τ<∞ 

∑h
l= 
− 

0
1 c ′ il(ϕ)q jq ′ jcil(ϕ )

FEV Di, j,h = 1 − ( ) = (7)
Var yi,t+h|{yτ }−∞<τ<t 

∑ 
l
h 
= 
− 

0
1 cil 

′ (ϕ)cil(ϕ) 

FEV Di, j,h measures by how much the FEV of variable i at horizon h is reduced by knowing the path 

of future realisations of structural shock j. It therefore tells us how important a particular shock is 

for driving unexpected variation in a particular variable over a given horizon on average over time.10 

In the two-variable setting, knowing the contribution of one shock to the horizon-h FEV means that 
we know the contribution of the other shock, since FEV Di,1,h + FEV Di,2,h = 1. In what follows, I 
therefore focus on the contribution of the first shock to the FEV of the first variable (pt ) as the object 
of interest, and denote this by FEV Dh ≡ FEV D1,1,h. 

3. What Do Sign Restrictions Tell Us about Decompositions? 

This section analytically characterises identified sets for particular structural parameters under 
sign restrictions on the slopes of supply and demand curves, closely following Baumeister and 

Hamilton (2015). I use this characterisation to discuss features of the sets of decompositions that 
are consistent with the restrictions, including conditions under which these sets are (un)informative 

about the decompositions. 

10 As discussed in Plagborg-Møller and Wolf (2022), when all shocks are invertible (which is the maintained assumption 
here), the information set {yτ }−∞<τ<t coincides with the information set {ετ }−∞<τ<t . 
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3.1 Sign restrictions and identified sets 

′ Let vech(Σtr) = (σ11,σ21,σ22) . The correlation between the innovations in pt and qt is 

√ 
σ21ρ = (8) 

σ2 
21 + σ22

2 

so σ21 controls whether the correlation is positive (σ21 > 0) or negative (σ21 < 0). The space of 
2 × 2 orthonormal matrices can be represented as {[ ]} {[ ]}

cosθ −sinθ cosθ sinθ 
O(2) = ∪ (9)

sinθ cosθ sinθ −cosθ 

where θ ∈ [−π,π] (e.g. Baumeister and Hamilton 2015). 

In the absence of identifying restrictions, the identified set for A−1 (the matrix of impact impulse0 

responses) is {[ ]}
σ11 cosθ −σ11 sinθA−1 ∈0 σ21 cosθ + σ22 sin θ σ22 cosθ − σ21 sin θ 

(10){[ ]}
σ11 cosθ σ11 sinθ ∪ 

σ21 cosθ + σ22 sin θ σ21 sinθ − σ22 cos θ 

Consider imposing the following pattern of sign restrictions on A−1:0 [ ]
+ +A−1 = (11)0 − + 

These restrictions require pt and qt to move in opposite directions in response to the first shock and in 

the same direction in response to the second shock. Therefore, the first shock can be interpreted as a 

supply shock and the second shock can be interpreted as a demand shock. Accordingly, I henceforth 

write εst ≡ ε1t to represent the supply shock and εdt ≡ ε2t to represent the demand shock. This means 

that FEV Dh represents the contribution of the supply shock to the horizon-h FEV of pt and Ht,t+h 

represents the contribution of the supply shock to the (h + 1)-step-ahead forecast error in pt . 

The identified set for θ under the sign restrictions is11 [ ( ) ]
σ22 arctan ,0 if ρ < 0 [ σ21( )]ISθ (ϕ) = (12) −π 

2 ,arctan −σ21 if ρ ≥ 0σ22 

This identified set is identical under the following pattern of restrictions on A0: [ ]
A0 =

+ − (13)
+ + 

which imply that the first equation of the SVAR describes an upward-sloping (i.e. supply) curve and 

the second describes a downward-sloping (i.e. demand) curve. 

11 For a derivation of this identified set, see Baumeister and Hamilton (2015) or Read (2022). 
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The structural shocks and reduced-form innovations are related via ε t = A0ut . We can think of 
this system of equations as describing the ‘short-run’ supply and demand curves. The slopes of 
these supply and demand curves are useful for understanding the conditions under which the sign 

restrictions are informative about the decompositions. I therefore present the identified sets for the 

slopes of these curves below, but these results are not new; for similar results, see Leamer (1981), 
Baumeister and Hamilton (2015) or Uhlig (2017). In the absence of identifying restrictions, the 

identified set for A0 is 

A0 ∈

{
1 

σ11σ22

[ ]}
σ22 cosθ − σ21 sinθ σ11 sinθ 
−σ21 cosθ − σ22 sinθ σ11 cosθ 

[ (14)]]
σ22 cosθ − σ21 sinθ σ11 sinθ 
σ21 cosθ + σ22 sinθ −σ11 cosθ

∪

[
1 

σ11σ22 

The slopes of the supply and demand curves are the coefficients on uqt in each equation after 
normalising the coefficients on upt to one. 

Let ωs(ϕ ,θ) represent the slope of the supply curve: 

σ11 sinθ
ωs(ϕ ,θ) = − (15)

σ22 cos θ − σ21 sinθ 

It is straightforward to show that the identified set for ωs(ϕ ,θ) is  [[0,∞) 

√ 
σ11 ρ, √ 

σ11 1 

if ρ < 0]
ISωs (ϕ) = (16)

if ρ ≥ 0 ρσ2 
21+σ22

2 σ2 
21+σ22

2 

If the forecast errors are negatively correlated, the sign restrictions do not reveal anything about 
the slope of the supply curve. If the forecast errors are positively correlated, it is possible to bound 

the slope of the supply curve. The informativeness of these bounds depends on how strongly the 

forecast errors are correlated; as ρ approaches one, the lower and upper bounds of the identified set 
converge to the same value. Intuitively, when the forecast errors are strongly positively correlated, 
the observed forecast errors approximately trace out the supply curve. 

Similarly, the slope of the demand curve is 

σ11 cosθ
ωd(ϕ ,θ ) = (17)

σ21 cosθ + σ22 sinθ 

and the identified set for ωd(ϕ ,θ ) is [ ]
if ρ < 0 

ISωd (ϕ) = 

   

√ 
σ11 1 √ 

σ11 ρρ , σ2 
21+σ22

2 σ2 
21+σ22

2 (18) 
(−∞,0] if ρ ≥ 0 

If the forecast errors are positively correlated, the sign restrictions reveal nothing about the slope 

of the demand curve. In contrast, when the forecast errors are negatively correlated, the sign 

restrictions generate informative bounds for the slope of the demand curve, which shrink to a point 
as ρ approaches minus one, in which case the forecast errors trace out the demand curve. 
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Figure 1 illustrates this reasoning using simulated data where the forecast errors are strongly 

negatively correlated. The strong negative correlation means that the forecast errors trace out the 

demand curve, but there is a wide range of supply curves that are consistent with the data. At one 

extreme, the observed forecast errors could have been generated by shifts in a vertical supply curve 

(corresponding to θ = arctan(σ22/σ21)) along the demand curve. At the other extreme, they could 

have been generated by shifts in a horizontal supply curve (corresponding to θ = 0). Any intermediate 

case between these two extremes is consistent with the sign restrictions and observed forecast errors. 

Figure 1: Identifying Supply and Demand Curves from Forecast Errors 
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Note: Dots represent forecast errors in price and quantity; red line is demand curve; lilac line is supply curve. 

3.2 Historical decomposition 

In this two-variable model, we can write the historical decomposition of pt with respect to the supply 

shock, Ht,t+h, as a function of θ , ϕ and {ul}
t+h 
l=t : 

[ ] 
[ ]

cosθ
Ht,t+h(θ , ϕ ,{ul}

t+h cosθ sinθ Ωh(ϕ ,{ul}
t+h (19)l=t ) = l=t ) sinθ 

where 
h∑ ′ Ωh(ϕ ,{ul}

t+h c1l(ϕ)(Σ
−1 (20)l=t ) = tr ut+h−l) 

l=0 

The identified set for θ in Equation (12) induces a set of values for the historical decompositions that 
are consistent with the reduced-form parameters and the observed data. I refer to this set of values 
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as the conditional identified set for Ht,t+h:12 { }
CISHt,t+h 

(ϕ ,{ul}
t+h Ht,t+h(θ , ϕ ,{ul}

t
l 
+
=t

h) : θ ∈ ISθ (ϕ) (21)l=t ) = [ ]
= Lt,t+h(ϕ ,{ul}

t
l 
+
=t

h),Ut,t+h(ϕ ,{ul}
t+h (22)l=t ) 

where Lt,t+h(ϕ ,{ul}
t
l 
+
=t

h) = infθ ∈ISθ (ϕ) Ht,t+h(θ , ϕ ,{ul}
t
l 
+
=t

h) is the lower bound of the conditional 
identified set and Ut,t+h(ϕ , {ul}

t
l 
+
=t

h) = supθ ∈ISθ (ϕ ) Ht,t+h(θ , ϕ ,{ul}
t
l 
+
=t

h) is the upper bound.13 Any 

value of Ht,t+h lying within CISHt,t+h 
(ϕ ,{ul}

t
l=
+ 

t
h) is equally consistent with the identifying restrictions, 

the joint distribution of the data (as summarised by ϕ ) and the observed forecast errors. 

The value of θ that attains the lower or upper bound of CISHt,t+h 
(ϕ ,{ul}

t
l=
+ 

t
h) may differ across t. 

The model corresponding to the lower or upper bound may thus differ, implying that the bounds 

correspond to supply or demand curves with different slopes in different periods. However, because 

every model – and thus decomposition – in the set is equally consistent with the data, the models 

that attain the bounds should not be given particular prominence over any other model within the 

identified set. 

3.2.1 Computation 

CISHt,t+h 
(ϕ ,{ul}

t+h can be computed by solving the optimisation problems that definel=t ) 

Lt,t+h(ϕ ,{ul}
t+h and Ut,t+h(ϕ ,{ul}

t
l 
+
=t

h). Focusing on the upper bound, Ut,t+h(ϕ ,{ul}
t+h 

l=t ) l=t ) 

corresponds to either an end point of ISθ (ϕ) or a critical point of Ht,t+h(θ , ϕ ,{ul}
t
l 
+
=t

h) in the interior 
of ISθ (ϕ). Evaluating Ht,t+h(θ , ϕ ,{ul}

t
l 
+
=t

h) at the end points of ISθ (ϕ) is straightforward given that 
an analytical expression for ISθ (ϕ) is available. Rewriting the historical decomposition as a function of 

′ q1, the problem maxq1 
Ht,t+h(q1, ϕ ,{ul}

t
l 
+
=t

h) subject to q1q1 = 1 has first-order necessary condition 
′ (1/2)(Ωh(ϕ ,{ul}

t
l 
+
=t

h) + Ωh(ϕ ,{ul}
t
l=
+ 

t
h) )q1 = λ q1, where λ is the Lagrange multiplier on the 

′ constraint. Solutions to this equation are eigenvectors of (1/2)(Ωh(ϕ ,{ul}
t
l 
+
=t

h)+ Ωh(ϕ ,{ul}
t+h ).l=t ) 

I compute the (two) eigenvectors, normalise their signs so that the sign normalisation 
′ ′ e1A0e1 = (Σ−1e1) q1 ≥ 0 is satisfied, and check whether the normalised eigenvector lies withintr 

ISθ (ϕ). Ut,t+h(ϕ ,{ul}
t
l 
+
=t

h) is then obtained by direct comparison of the function values at the end 

points and admissible critical points (if any). Lt,t+h(ϕ ,{ul}
t
l 
+
=t

h) is obtained similarly. 

3.2.2 A special case 

Consider the case where interest is in the contribution of the supply shock to the one-step-ahead 

forecast error in pt , so h = 0. It can be shown directly that 

1
Ht,t (θ , ϕ ,ut ) = upt cos2 θ + (σ11uqt − σ21upt )sinθ cosθ (23)

σ22 

12 The historical decomposition is a function of the realisation of the data in period t (via the reduced-form innovations), 
so the standard concept of an identified set does not apply; see Giacomini, Kitagawa and Read (2023) for a discussion 
of this point in the context of SVARs identified via narrative restrictions. 

t+h t+h13 Since ISθ (ϕ) is an interval and Ht,t+h(θ , ϕ ,{ul }l=t ) is a continuous function of θ , CISHt,t+h 
(ϕ ,{ul }l=t ) is also an interval. 

The lower bound for the contribution of the supply shock and the upper bound of the contribution of the demand shock 
add up to the observed forecast error. Hence, bounds for the contribution of the demand shock can easily be inferred 
from the bounds for the contribution of the supply shock. 
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tThis expression is equivalent to H1,t (θ , ϕ ,{ul}l=1) when shocks have non-zero effects only on 
′ impact, in which case c1l(ϕ) = (0,0) for all l > 0. We can therefore use this expression to draw 

some useful intuition about the conditions under which the sign restrictions are informative about 
historical decompositions, with the qualification that when interest is in definitions of the historical 
decomposition other than Ht,t (e.g. H1,t ), the intuition is approximate (or may break down) when the 

effects of shocks are persistent. 

The set of historical decompositions always admits ‘extreme’ contributions. When ρ < 0, 
0 ∈ ISθ (ϕ) and upt ∈ CISHt,t 

(ϕ ,ut ). That is, when the forecast errors in pt and qt are negatively 

correlated, the restrictions always admit the possibility that the supply shock is entirely responsible for 
the unexpected change in pt . Intuitively, this is because the restrictions always admit the two extreme 

models in which the supply curve is vertical or horizontal. Conversely, when ρ ≥ 0, −π/2 ∈ ISθ (ϕ ) 
and 0 ∈ CISHt,t 

(ϕ ,ut ). So, when the forecast errors in pt and qt are positively correlated, the 

restrictions always admit the possibility that a supply shock is responsible for none of the unexpected 

change in pt . This is because the restrictions admit the two extremes where the demand curve is 

vertical or horizontal. 

The set of historical decompositions is uninformative when innovations are weakly 

correlated. If ρ = 0, ISθ (ϕ)= [−π/2,0]. In this case, both 0 and upt lie within CISHt,t 
(ϕ ,ut ). The set 

of contributions is therefore consistent with forecast errors being driven entirely by a demand shock 

or entirely by a supply shock. The intuition is that uncorrelated innovations are equally consistent 
with a vertical supply curve and a horizontal demand curve (θ = −π/2), in which case forecast errors 

are purely driven by demand shocks, or with a horizontal supply curve and a vertical demand curve 

(θ = 0), in which case forecast errors are purely driven by supply shocks. Any observed forecast 
errors can be explained by either of these extreme cases. 

The set of historical decompositions can be very informative when forecast errors are 

strongly correlated. When the forecast errors are strongly negatively correlated, they trace out 
the demand curve, and forecast errors predominantly reflect supply shocks. However, we learn very 

little about the shape of the supply curve; the same forecast errors could be generated by shocks to 

a supply curve that is very steep, very flat, or something in between (see Figure 1). If we observe 

forecast errors that are consistent with the historical negative relationship, then we can conclude 

that they were mainly driven by a supply shock (even though we do not know much about the shape 

of the supply curve), so the set of historical decompositions is narrow around the observed forecast 
error. Similar reasoning applies when the forecast errors are strongly positively correlated, except in 

that case the forecast errors trace out the supply curve and forecast errors are attributable to demand 

shocks. 

To illustrate this case, the top panels of Figure 2 plot two potential shifts in the supply curve that 
could have generated a particular forecast error – specifically, a roughly 1.5 per cent fall in price and 

1.5 per cent increase in quantity. The forecast error can, at one extreme, be completely explained by 

a shift in a vertical supply curve (top left panel) or, at the other extreme, a shift in a horizontal supply 

curve (top right panel). Shifts in supply curves with any intermediate slope are also compatible with 

the observed forecast error. Despite not knowing anything about the slope of the supply curve, the 

contribution of the supply shock to the forecast error in prices is pinned down to be (approximately) 
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equal to the observed forecast error – that is, the supply shock contributed 1.5 percentage points to 

the unexpected decline in prices. 

Figure 2: Identifying Historical Decompositions from Forecast Errors 
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Notes: Dots represent forecast errors in price and quantity; red line is demand curve; lilac line is supply curve. Dashed 
lines represent shifts in supply and demand curves that could explain particular forecast errors. 

But the set of historical decompositions can also be very uninformative even when 

forecast errors are strongly correlated. If the forecast errors are strongly negatively correlated 

but we observe forecast errors that depart from the historical negative relationship, the set of 
historical decompositions may be wide and thus economically uninformative. The bottom panels 

of Figure 2 illustrate the reasoning. In the left panel, a 0.5 per cent fall in both price and quantity can 

be explained by the combination of a negative demand shock (a downward shift in the demand curve 

from the solid to dashed red line) and a negative shock to a vertical supply curve (a leftward shift in 

the supply curve from the solid to dashed lilac line). In this case, the contribution of the supply shock 

to the forecast error in pt is 0.5 percentage points. Alternatively, as illustrated in the right panel, the 

forecast error can be explained by a combination of the same negative demand shock and a negative 

shock to a horizontal supply curve. In this case, the contribution of the supply shock to the forecast 
error in pt is −0.5 percentage points. Shifts in supply curves with slopes that lie between these two 

extremes are also consistent with the forecast error. The conditional identified set for the historical 
decomposition is therefore CISHt,t 

(ϕ ,ut ) = [−0.5,0.5]. One intermediate case (not plotted) is where 

the forecast error is driven entirely by a negative demand shock shifting the demand curve along a 

supply curve with gradient one, in which case the contribution of the supply shock is zero. 



ϕϕ ϒϒ ϕϕ

ϕϕ ϕϕ
ϒϒ ϕϕ

ϕϕ ϕϕ

ϕϕ

ϕϕ ϕϕ ϕϕ

ϕϕ ϕϕ

ϕϕ ϕϕ ϕϕ
ϕϕ ϕϕ ϕϕ

ϕϕ
ϕϕ ϕϕ

ϕϕ
ϕϕ

ϒϒ ϕϕ
ϒϒ ϕϕ

ϕϕ ϕϕ
ϕϕ ϕϕ

ϕϕ
ϕϕ ϕϕ

ϕϕ ϕϕ

ϕϕ

13 

3.3 Forecast error variance decomposition 

We can rewrite FEV Dh as [ ] [ ]
cosθ

FEV Dh(θ , ϕ) = cosθ sinθ ϒh(ϕ ) (24)
sinθ 

where ∑h ′ 
l=0 c1l(ϕ)c1l(ϕ)ϒh(ϕ) = (25)∑h ′ 
l=0 c1l(ϕ)c1l(ϕ) 

The identified set for FEV Dh(θ , ϕ) is then defined as 

ISFEV Dh 
(ϕ) = {FEV Dh(θ , ϕ) : θ ∈ ISθ (ϕ)} (26) 

= [ℓh(ϕ),uh(ϕ)] (27) 

where ℓh(ϕ) = infθ ∈ISθ (ϕ ) FEV Dh(θ , ϕ) is the lower bound of the identified set and 

uh(ϕ) = supθ ∈ISθ (ϕ ) FEV Dh(θ , ϕ ) is the upper bound.14 Any value of FEV Dh lying within 

ISFEV Dh 
(ϕ ) is equally consistent with the identifying restrictions and the second moments of the 

data, as summarised by ϕ . As in the case of the historical decomposition, the bounds of ISFEV Dh 
(ϕ ) 

may be attained by different values of θ (i.e. models) at different horizons. 

Computation of ISFEV Dh 
(ϕ) proceeds similarly to the case where the historical decomposition is 

the quantity of interest (described in Section 3.2.1). The problem maxq1 
FEV Dh(q1, ϕ) subject to 

′ q1q1 = 1 has first-order necessary condition ϒh(ϕ )q1 = λ q1, where λ is the Lagrange multiplier on 

the constraint. Solutions to this equation are eigenvectors of ϒh(ϕ).15 

3.3.1 A special case 

Consider the case where interest is in the one-step-ahead FEVD of pt with respect to the supply 

shock, FEV D0. The contribution of εst to the FEV of pt is σ11
2 cos2 θ (i.e. the square of the impact 

impulse response of pt to a standard deviation supply shock). Since the one-step-ahead FEV of y1t 
is σ11

2 , the contribution of εst to the FEV as a fraction of the total FEV is cos2 θ . 

When ρ < 0, the upper bound of ISθ (ϕ) is zero, so cos2 θ attains its maximum of one and u0(ϕ) = 1. 
cos2 θ is strictly increasing for θ ∈ [arctan(σ22/σ21),0], so ℓ0(ϕ) occurs at the lower bound of ISθ (ϕ). 
When ρ ≥ 0, ISθ (ϕ) is bounded above by zero and has lower bound −π/2. cos2 θ therefore achieves 

its minimum value of zero at −π/2 and ℓ0(ϕ) = 0. cos2 θ is strictly increasing for θ ∈ ISθ (ϕ), so 

u0(ϕ) occurs at the upper bound of ISθ (ϕ ). Putting this together and rewriting the bounds in terms 

of ρ, the identified set for FEV D0 is [ ] ρ2 , 1 if ρ < 0 [ ]ISFEV D0 
(ρ) = (28) 0,1 − ρ2 if ρ ≥ 0 

14 Following the same reasoning as in footnote 13 for the historical decomposition, ISFEV Dh 
(ϕ ) is always an interval. Also, 

bounds for the contribution of the demand shock can easily be inferred from the bounds for the contribution of the 
supply shock. 

15 The same reasoning underlies implementation of the ‘max share’ approach to identification, which involves finding the 
‘shock’ with maximal contribution to a particular FEV (e.g. Uhlig 2003; Angeletos, Collard and Dellas 2020; Carriero and 
Volpicella forthcoming). 
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Echoing the analysis of the historical decomposition, the sign restrictions always admit extreme values 

of the FEVD. When ρ < 0, the sign restrictions always admit the possibility that the supply shock 

explains all of the variance of upt (because the supply curve may be horizontal) and when ρ ≥ 0 they 

always admit the possibility that the supply shock explains none of the variance (because the demand 

curve may be horizontal). As ρ → 0, ISFEV D0 
(ϕ) approaches [0,1], in which case the restrictions are 

completely uninformative. 

The sign restrictions become more informative as the magnitude of the correlation between forecast 
errors, ρ, increases. ISFEV D0 

(ρ) collapses to one as ρ → −1; intuitively, if the one-step-ahead 

forecast errors are close to perfectly negatively correlated, the forecast errors must be generated 

by supply shocks shifting the supply curve along a static demand curve (see Figure 1). Conversely, 
ISFEV D0 

(ρ) converges to zero as ρ → 1; if the one-step-ahead forecast errors are close to perfectly 

positively correlated, the forecast errors must be generated by demand shocks shifting the demand 

curve along a static supply curve. To conclude unambiguously√which shock is driving most of the 

variation in prices, it is necessary that ρ2 > 0.5; when ρ < − 0.5, supply shocks account for at√ 
least half the variance of prices, whereas when ρ > 0.5 demand shocks account for at least half 
the variance of prices.16 

4. Supply-demand Decompositions of US Inflation 

This section builds on the insights above – in terms of using the sign restrictions to set identify the 

contributions of supply and demand shocks – to decompose US inflation into its drivers. I conduct 
two exercises that relate to existing decompositions of US inflation. The first approach is based on 

aggregate data and relates closely to a decomposition in Chang et al (2023), as well as possessing 

similarities to decompositions in Bergholt et al (2023) and Giannone and Primiceri (2024). The 

second approach builds a bottom-up decomposition of aggregate PCE inflation using disaggregated 

data on different expenditure categories, and relates to the influential decomposition proposed in 

Shapiro (2022). 

4.1 An aggregate decomposition 

Using a two-variable SVAR identified via sign restrictions, Chang et al (2023) decompose inflation and 

real GDP growth in the United States into contributions from shocks to aggregate supply and demand. 
They present historical decompositions based on a single model chosen from the set of models that 
are consistent with the sign restrictions using the ‘median target’ criterion from Fry and Pagan (2011). 
In contrast, I characterise sets of decompositions that are consistent with the identifying restrictions. 

The model’s endogenous variables are yt = (πt , gt ) 
′ , where πt is quarterly growth in the GDP deflator 

and gt is quarterly growth in real GDP.17 Quarterly growth rates are approximated by log differences. 
The model includes a constant and eight lags of the endogenous variables and is estimated using 

16 In the context of maximum likelihood estimation of a supply-demand system under sign restrictions on the slopes of 
supply and demand curves, Leamer (1981) derives bounds on the ‘residual variance ratio’, defined as the variance 
of demand shocks divided by the variance of supply shocks. For example, when prices and quantities are negatively√ 
correlated, the upper bound for this ratio is less than one if ρ < − 0.5, in which case supply shocks explain at least half 
the variance of prices. 

17 The data are obtained from the Federal Reserve Bank of St. Louis Federal Reserve Economic Database (FRED), with 
mnemonics GDPDEF and GDPC1. 
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data from 1989:Q1 to 2023:Q2.18 I estimate the reduced-form parameters via ordinary least squares 

(OLS) and compute the sets of decompositions conditional on these estimates.19 

As above, the identifying restrictions are that aggregate supply shocks move inflation and output 
in opposite directions and aggregate demand shocks move them in the same direction, which is 

equivalent to assuming the aggregate supply curve is upward sloping and the aggregate demand 

curve is downward sloping. Chang et al (2023) restrict the impulse responses on impact and in the 

period after the shocks. To avoid making assumptions about the persistence of the effects of shocks, 
I impose the restrictions only on impact. 

Consistent with Chang et al (2023), I estimate the contributions of both current and past supply 

shocks to the realisation of inflation. In the notation of Section 2.2, this means that the historical 
decomposition of interest is H1,t . I present decompositions of both quarterly and year-ended 

inflation.20 As discussed above, it is not possible to allocate the entirety of inflation to either supply 

or demand shocks, because part of inflation is explained by the constant and initial conditions. For 
ease of presentation, Figure 3 – which presents the estimated sets of historical decompositions – 

plots only the part of inflation that can be explained by shocks occurring within the sample; that 
is, after removing the deterministic component. On average, deterministic terms contributed about 
0.5 percentage points to quarterly inflation and 2 percentage points to year-ended inflation. 

Figure 3: Contribution of Supply Shocks to Inflation in GDP Deflator 
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Note: Inflation is (quarterly or year-ended) growth in GDP deflator after removing contributions from constant and 
initial conditions. 

Sources: Author‘s calculations; Federal Reserve Bank of St. Louis. 

18 Chang et al (2023) include four lags. I include eight lags to soak up a significant residual autocorrelation at the eighth 
lag. The estimated sets tend to widen when using four lags, indicating some sensitivity to the choice of lag order. 

19 Estimation uncertainty about the reduced-form parameters means there is uncertainty about the sets. Appendix A 
quantifies this uncertainty using a prior robust Bayesian approach to inference (Giacomini and Kitagawa 2021). 

20 Because quarterly growth rates are approximated by log differences, contributions to year-ended growth rates are four-
quarter rolling sums of contributions to quarterly growth rates. The bounds of the sets for the year-ended contributions 
are obtained using the strategy described in Section 3.2.1 with an appropriate modification of the matrix in Equation (20). 
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The correlation in the one-step-ahead forecast errors for πt and gt is 0.47. The observed forecast 
errors can therefore be interpreted as roughly tracing out an upward-sloping (short-run) aggregate 

supply curve, but we learn nothing about the slope of the (short-run) aggregate demand curve. 
Although the set of historical decompositions tends to be wide, it still appears to deliver useful 
inferences about the drivers of inflation in some periods. For example, when year-ended inflation 

peaked in 2022:Q2 at 7.4 per cent, supply shocks are estimated to have contributed between 1.3 and 

3.4 percentage points (deterministic terms contributed about 2.1 percentage points to year-ended 

inflation in this period). The estimates therefore suggest that supply shocks made a substantial 
contribution to the increase in inflation in this episode, though the estimates do not allow us to 

unambiguously conclude whether the increase was mostly driven by supply or demand shocks. 

The moderate degree of correlation between the one-step-ahead forecast errors means that the 

identified set for the FEVD is fairly wide (Figure 4). Aggregate supply shocks are estimated to account 
for between zero and 78 per cent of the variance of one-step-ahead forecast errors, and between 

20 and 60 per cent of the variance of forecast errors at the five-year horizon. The sign restrictions 

therefore do not shine much light on the drivers of aggregate inflation at short horizons, though they 

suggest that supply shocks make a nontrivial contribution at longer horizons. 

Figure 4: Contribution of Supply Shocks to Forecast Error Variance of Inflation 
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4.1.1 Robustness 

The VAR described above is estimated over a sample period that includes the COVID-19 pandemic, 
which is consistent with the exercise in Chang et al (2023). One may worry that the large swings in 

economic activity that occurred during the pandemic may unduly affect the estimates of ϕ and thus 

the sets of decompositions generated by the sign restrictions. This section explores the robustness of 
the results presented above to excluding the data from this episode from the estimation sample. To do 
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this, I omit the data from 2020:Q1 onwards.21 The data from 2020:Q1 to 2023:Q2 are subsequently 

used to construct the reduced-form VAR innovations and historical decompositions during the period 

after the onset of the pandemic. 

Re-estimating the model over this period yields an estimate for ρ around 0.01, which is much smaller 
than the estimate obtained over the full sample (0.47). The large reduction in ρ results in sets of 
decompositions that are substantially less informative (i.e. much wider) than those obtained over the 

full sample. For example, the sets of historical decompositions for year-ended inflation tend to include 

zero and the realisation of inflation itself (Figure 5). In 2022:Q2, supply shocks are estimated to have 

contributed between 0.3 and 4.4 percentage points to year-ended inflation. Identified sets for the 

FEVD (not plotted) are also wide, spanning from zero to (almost) one at the impact horizon and from 

around 15 to around 80 per cent at the five-year horizon. Overall, after excluding the pandemic from 

the estimation sample, the sign restrictions appear to be largely uninformative about the drivers of 
inflation in the GDP deflator.22 

Figure 5: Contribution of Supply Shocks to Inflation in GDP Deflator – Restricted 
Estimation Sample 
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Note: Inflation is (quarterly or year-ended) growth in GDP deflator after removing contributions from constant and 
initial conditions. 

Sources: Author‘s calculations; Federal Reserve Bank of St. Louis. 

21 Schorfheide and Song (forthcoming) suggest that excluding extreme observations is a promising way of handling VAR 
estimation over samples including the pandemic period. This is a simpler alternative to more sophisticated modelling of 
outliers (e.g. including variance breaks, as in Lenza and Primiceri (2022)). 

22 Whether we should place more weight on these results or on the earlier results that include the pandemic in the estimation 
sample should depend on views about the nature of the pandemic-related volatility. In particular, is this volatility a useful 
source of variation for identifying and estimating model parameters or does it represent a (temporary) break in the 
data-generating process? Answering these questions is beyond the scope of this paper. 
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4.2 Disaggregated decompositions 

Shapiro (2022) proposes a supply-demand decomposition of US inflation in the PCE index based on 

disaggregated data. The decomposition involves estimating VARs for prices and quantities consumed 

in different PCE expenditure groups. Given sign restrictions on the slopes of the supply and demand 

curves, if the price and quantity forecast errors have the same sign, a demand shock must have 

occurred, and the price change is classified as demand driven. If the forecast errors have opposite 

signs, a supply shock must have occurred, and the price change is classified as supply driven.23 On 

this basis, overall inflation is decomposed into demand- and supply-driven components. 

More precisely, let the superscript k index expenditure categories. π(k) is quarterly inflation int 
expenditure category k and w(k) is the expenditure weight in the consumption basket. The supply-t 
driven component of aggregate quarterly inflation is then defined as 

Π(s) ∑ 
π(k)(k) (k) (k) 

t = 1(upt uqt < 0)wt t (29) 
k 

where 1(.) is the indicator function. The demand-driven component is defined similarly.24 

A feature of this decomposition is that it allocates the entire price change in an expenditure category 

on the basis of contemporaneous demand or supply shocks even though these shocks could only 

contribute to the one-step-ahead forecast error (i.e. the ‘unexpected’ part of the price change). It 
therefore ignores the lagged effects of shocks and the contributions of deterministic terms. The 

decomposition may also misrepresent the direction in which shocks contribute to inflation. For 
(k) (k)example, if u < 0, u > 0 and π(k) 

> 0, then π(k) will contribute positively to the supply-driven pt qt t t 
component of inflation despite the model implying that a disinflationary supply shock has occurred in 

category k. The decomposition also allocates the entirety of the price change in a particular category 

to either a supply or demand shock, when it seems probable that price changes in each period are 

driven by a mix of supply and demand shocks.25 

I address these issues by directly estimating the set of historical decompositions within different 
expenditure categories. The concept of the historical decomposition employed is H1,t , so the effects 

of all past shocks are captured. The aim of the exercise is to explore the extent to which the sign 

restrictions allow us to learn about the contributions of supply and demand shocks within different 
expenditure categories. I then use the disaggregated results to construct a bottom-up decomposition 

of aggregate PCE inflation and compare it against a decomposition based on the aggregate PCE 

data. The exercise therefore speaks to whether applying the supply-demand decomposition to 

disaggregated data provides useful information about the contributions of supply and demand shocks 

to aggregate inflation relative to applying the decomposition to the aggregate data directly. 

23 Calvert Jump and Kohler (2022) explain that knowledge of the signs of one-step-ahead forecast errors along with 
assumptions about the slopes of supply and demand curves are sufficient to back out the signs of shocks to supply and 
demand. We can write εst = a11upt + a12uqt and εdt = a21upt + a22uqt , where ai j is the (i, j) element of A0. Given the sign 
restrictions, knowledge of the signs of upt and uqt reveal the sign of one underlying shock. For example, if upt > 0 and 
uqt < 0, then εst > 0 and the sign of εdt is undetermined. 

24 Shapiro (2022) also defines an ‘ambiguous’ component containing expenditure categories whose price or quantity 
innovations were relatively small, but I abstract from this for simplicity. 

25 Beckers (2023) and Beckers et al (2023) also discuss caveats around this decomposition. While it is possible to formulate 
conditions under which inflation in a supply-driven category coincides with the historical decomposition of inflation in 
that category, these conditions are extreme (e.g. inflation has no deterministic component and shocks have no effects 
beyond the impact horizon). 
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I consider 136 expenditure categories that make up the PCE data between January 1988 and 
(k)

= (π(k) (k) ′ September 2023.26 Within expenditure category k, the endogenous variables are y ,g ) ,t t t 
(k)where π(k) is monthly inflation in the PCE price index and g is monthly growth in real PCEt t 

(approximated using log differences). Each VAR includes 12 lags of the variables and a constant.27 

I estimate each VAR separately via OLS and compute sets of historical decompositions conditional 
on the OLS estimates of the reduced-form parameters. Though the VAR is estimated at the monthly 

frequency, I present historical decompositions of year-ended inflation. 

As discussed in Section 3, the correlation between the forecast errors in prices and quantities is 

important in determining how informative the sign restrictions are about the slopes of supply and 

demand curves and thus about the contributions of shocks to inflation. The category with the smallest 
absolute correlation is ‘lubricants and fluids’ (|ρ| < 0.0001) and with the largest absolute correlation is 

‘food produced and consumed on farms’ (ρ = −0.98). Figure 6 presents the historical decompositions 

for these two groups. 

Figure 6: Contribution of Supply Shocks to Inflation in Selected PCE Categories 
Year-ended 
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Note: Inflation is year-ended growth in price index for PCE category after removing contributions from constant and 

initial conditions. 
Sources: Author‘s calculations; Bureau of Economic Analysis. 

26 The data are obtained from the Bureau of Economic Analysis National Accounts Underlying Detail Tables. As described 
in Shapiro (2022), these categories represent the ‘fourth level of disaggregation’ of the PCE data. 

27 The baseline specification in Shapiro (2022) is in levels, whereas mine is in log first differences, though he considers 
the first-difference specification in a robustness exercise. I prefer to work with the first-difference specification because 
the VARs in log levels tend to be explosive, in which case the historical decomposition is also explosive. Shapiro also 
estimates his models over rolling windows to allow for time variation in parameters, but I assume constant parameter 
values for simplicity. 
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The set of historical decompositions for lubricants and fluids inflation often includes zero and the 

realisation of inflation itself (after removing the contribution of deterministic terms). The sets are 

therefore largely uninformative about whether price changes in this category are entirely driven by 

supply or demand shocks, which is broadly consistent with the discussion in Section 3. 

In contrast, for food produced and consumed on farms, the strong negative correlation between 

forecast errors in prices and quantities means that the forecast errors trace out a short-run demand 

curve, and the contribution of supply shocks is bounded within a narrow range in most periods. To 

give an example, in March 2022, year-ended inflation in this expenditure category was 30.1 per cent, 
28.4 percentage points of which can be explained by shocks occurring during the sample period 

(i.e. the contribution of deterministic components was a bit under 2 percentage points). Supply 

shocks are estimated to have contributed 23.9 to 25.1 percentage points to year-ended inflation in 

this period. 

The correlation between forecasts errors tends to be reasonably weak in most other expenditure 

groups considered; the absolute correlations are smaller than 0.2 in about half of the categories and 

smaller than 0.4 in about 80 per cent of categories (Figure 7). The sign restrictions therefore tend to 

be fairly uninformative about the supply-demand composition of inflation outcomes within different 
expenditure categories. 

Figure 7: Correlation between Forecast Errors (ρ) – Distribution across PCE Categories 
Relative frequency 
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To summarise the overall informativeness of the restrictions, I compute an expenditure-weighted 

average of the lower and upper bounds of the set of historical decompositions. Figure 8 presents this 

bottom-up decomposition of aggregate PCE inflation alongside a decomposition constructed using the 
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aggregate PCE data directly.28 Separately decomposing PCE inflation in disaggregated expenditure 

categories does not appear to generate more informative decompositions of aggregate PCE inflation 

relative to a direct decomposition based on the aggregate data. In fact, the bottom-up decomposition 

generates substantially wider sets than the aggregate decomposition; on average over the sample 

period, the width of the sets is 2.6 percentage points for the bottom-up decomposition compared 

with 1.1 percentage points for the aggregate decomposition. 

Figure 8: Contribution of Supply Shocks to PCE Inflation 
Year-ended 
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Notes: Inflation is year-ended growth in PCE price index after removing contributions from constant and initial 
conditions. Exercises omit two categories whose category-level VARs were unstable. 

Sources: Author‘s calculations; Bureau of Economic Analysis. 

The bottom-up decomposition clearly reveals little about the drivers of the post-pandemic surge in 

US inflation, admitting contributions for the supply shock ranging anywhere from around zero to 

the entire change (less the contribution of deterministic terms). The aggregate decomposition yields 

sharper conclusions; for instance, in June 2022, the aggregate decomposition suggests that supply 

shocks contributed between 0.7 and 3 percentage points to year-ended PCE inflation. Much like the 

aggregate decomposition of inflation in the GDP deflator (Section 4.1), the aggregate decomposition 

of PCE inflation suggests that, while supply shocks made a substantial contribution to the increase 

in inflation in the post-pandemic episode, the sign restrictions do not allow us to unambiguously 

conclude whether the increase was mostly driven by supply or demand shocks. 

One reason why the bottom-up decomposition may generate less-informative decompositions of 
aggregate PCE inflation than using the aggregate data directly is if there is a greater degree of 
measurement error at finer levels of disaggregation. Intuitively, the presence of (uncorrelated) 

28 The bottom-up decomposition omits contributions from two categories in which the estimated VARs were explosive 
(‘lotteries’ and ‘maintenance and repair of recreational vehicles and sports equipment’). These categories account for 
only 0.2 per cent of aggregate expenditure. For comparability, the aggregate exercise excludes the same two categories. 
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measurement error in the price and quantity data would generate one-step-ahead forecast errors 

that are less strongly correlated than the forecast errors that would be obtained if price and quantity 

were observed without error. As discussed above, weaker correlations in these forecast errors mean 

that the sign restrictions reveal less about the slopes of supply and demand curves and thus less 

about shock decompositions. Indeed, the Bureau of Economic Analysis notes that the PCE data at 
this level of disaggregation is of significantly lower quality than that of the higher-level categories of 
which they are a part, as they are more likely to be based on judgement or on less-reliable source 

data (Bureau of Economic Analysis 2017).29 

As in Section 4.1.1, re-doing this exercise with an estimation sample that excludes the COVID-19 

period tends to generate wider sets, both for the bottom-up and aggregate decompositions. However, 
it remains the case that the bottom-up decomposition yields much wider sets than the decomposition 

estimated using the aggregate data directly; see Appendix B. 

5. Conclusion 

Sign restrictions on the slopes of supply and demand curves provide an appealing avenue for 
identifying the contributions of supply and demand shocks to price changes because they are based 

on assumptions that are relatively uncontroversial. This is probably why they have been employed 

by researchers seeking to understand what has driven recent inflation developments. However, it is 

important to recognise that – on their own – these restrictions only allow us to conclude that the 

contributions lie within a set. In some cases, these sets may not allow us to draw unambiguous 

conclusions about whether price changes are mostly driven by shocks to supply or demand. In such 

cases, any additional assumptions that are used to select a single model or decomposition are likely to 

have a strong influence on assessments about which shocks are principally contributing to inflation. 

While this paper focuses on estimating the contributions of supply and demand shocks to variation 

in prices, the discussion applies to other settings in which a bivariate system is identified using the 

same pattern of sign restrictions. For instance, models of search and matching in the labour market 
imply that equilibrium unemployment and vacancy rates are determined by the intersection of a 

downward-sloping Beveridge curve and an upward-sloping job creation curve (e.g. Daly et al 2012). 
It may therefore be appealing to use sign restrictions on the slopes of these curves to decompose 

variation in unemployment and vacancy rates. The analysis in this paper is useful for understanding 

the conditions under which such decompositions are informative. 

This paper has characterised sets of decompositions, taking as given the modelling framework, which 

is a bivariate SVAR in prices and quantities identified via sign restrictions on the slopes of supply and 

demand curves. It could be useful for further work to explore what this framework identifies in 

terms of the underlying structure of the economy. For example, one could consider a New Keynesian 

model as a data-generating process and explore what the sign-restricted supply-demand framework 

identifies in terms of the model’s underlying structural parameters and shocks.30 

29 Measurement error in the aggregate data could also make the aggregate decompositions less informative than if the 
aggregate data were observed without error. The estimates in Aruoba et al (2016) suggest that US real GDP growth is 
measured with substantial error. 

30 In a similar vein, Wolf (2020) uses the textbook New Keynesian model (as well as a quantitatively richer variant) as a 
laboratory to explore the ability of sign restrictions on impulse responses to identify monetary policy shocks. 
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Appendix A: Inference about Decompositions 

The sets of decompositions presented in Section 4 are constructed conditional on the reduced-
form parameters ϕ being fixed at their OLS estimates. These sets can be interpreted as frequentist 
estimators of (conditional) identified sets. There is uncertainty around the estimates of ϕ , which 

means there is also uncertainty around sets of decompositions.31 To quantify this uncertainty, I 
employ the ‘robust Bayesian’ approach to inference proposed in Giacomini and Kitagawa (2021). The 

appeal of this approach is its computational tractability and prior robust Bayesian interpretation in 

finite samples.32 

Standard (single prior) approaches to Bayesian inference specify a prior over ϕ and a (conditional) 
prior over Q (or θ in the bivariate model under consideration) given ϕ .33 Because Q does not enter 
the likelihood, the conditional prior is not updated and posterior inferences may be (asymptotically) 
sensitive to the choice of conditional prior (e.g. Poirier 1998; Moon and Schorfheide 2012; Baumeister 
and Hamilton 2015). Giacomini and Kitagawa (2021) propose removing this source of posterior 
sensitivity by replacing the single conditional prior with the class of all conditional priors that are 

consistent with the identifying restrictions (i.e. that assign probability one to ISθ (ϕ)). This generates 

a class of posteriors for the parameters of interest, which can be summarised in different ways. For 
example, the ‘set of posterior means’ for a given parameter (e.g. an FEVD at a particular horizon) is 

an interval spanning the posterior means corresponding to the class of posteriors. A ‘robust credible 

interval’ with credibility 1 − τ is an interval that is assigned at least posterior probability 1 − τ under 
any posterior in the class. In practice, computing these quantities requires computing (conditional) 
identified sets for the parameters of interest at every draw of ϕ from its posterior (given some prior). 
In the current setting, this is computationally simple given the strategy for computing the bounds of 
the (conditional) identified sets for the decompositions (e.g. Section 3.2.1). 

I assume a Jeffreys’ prior over ϕ , πϕ ∝ |Σ|−(n+1)/2, which is truncated to the region where the VAR 

is stable. This implies that the posterior for ϕ is a (truncated) normal-inverse-Wishart distribution.34 

Figure A1 presents the set of posterior means for the historical decomposition of year-ended growth 

in the GDP deflator alongside a 68 per cent robust credible interval. The set of posterior means for the 

supply contribution is somewhat wider on average than the set conditional on the OLS estimates of 
ϕ (presented in Section 4.1).35 The robust credible intervals have excluded zero since late 2021, 
suggesting that, after accounting for statistical uncertainty, there is strong evidence that supply 

shocks have contributed positively to inflation outcomes in this period. To quantify this more precisely, 
I compute the posterior lower and upper probabilities that the contribution of the supply shock to 

year-ended inflation is positive; these are, respectively, the smallest and largest posterior probabilities 

31 Uncertainty around historical decompositions is often ignored. Notable exceptions are Antolín-Díaz and Rubio-
Ramírez (2018) and Bergholt et al (2024). 

32 Granziera, Moon and Schorfheide (2018) develop a Bonferroni approach to construct asymptotically valid frequentist 
confidence sets for impulse responses or FEVDs in set-identified SVARs. They do not consider conducting inference 
about historical decompositions. 

33 Some papers specify the prior directly over the structural parameters (e.g. Baumeister and Hamilton 2015), but such a 
prior can also be represented as the product of a prior for ϕ and a conditional prior for Q. Baumeister and Hamilton (2018) 
explain how to conduct Bayesian inference about historical decompositions and FEVDs under a single prior distribution. 

34 The VAR is stable in 84 per cent of draws from the (non-truncated) posterior. 
35 The two sets should coincide asymptotically. See Giacomini and Kitagawa (2021) for a discussion of the frequentist 

properties of their robust Bayesian procedure. 
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assigned to the hypothesis that H1,t ≥ 0 obtainable within the robust Bayesian class of posteriors. 
In the March quarter 2022 (when inflation peaked), the posterior lower probability that the supply 

shock was contributing positively to inflation was 95 per cent and the posterior upper probability was 

100 per cent. 

Figure A1: Contribution of Supply Shocks to Inflation in GDP Deflator – Robust 
Bayesian Inference 
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Note: Inflation is year-ended growth in GDP deflator after removing contributions from constant and initial conditions 
(at the posterior mean). 

Sources: Author‘s calculations; Federal Reserve Bank of St. Louis. 
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Appendix B: Additional Empirical Results 

This appendix explores the robustness of the decomposition of aggregate PCE inflation in Section 4.2 

to excluding the COVID-19 period from the estimation sample. The VARs are estimated using a sample 

that runs up to 2019:M12.36 The estimated sets tend to be wider than those obtained using the full 
estimation sample (Figure B1). For the decomposition based on aggregate data, these wider sets 

reflect that the estimated value of ρ is substantially smaller (0.04) than in the full sample (0.18). It 
remains the case that the sets from the bottom-up decomposition are substantially wider than the 

sets obtained when using the aggregate data. 

Figure B1: Contribution of Supply Shocks to PCE Inflation – Restricted Estimation 
Sample 
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Note: Inflation is year-ended growth in PCE price index after removing contributions from constant and initial 
conditions. 

Sources: Author‘s calculations; Bureau of Economic Analysis. 

36 Unlike the exercise in Section 4.2 based on the full sample of data, all category-level VARs are stable. There is 
consequently a (small) difference in coverage of the expenditure basket between Figures 8 and B1. 
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