
Boundedly Rational 
Expectations and the 
Optimality of Flexible 
Average Inflation 
Targeting
By Anthony Brassil, Christopher G Gibbs  
and Callum Ryan

Research Discussion Paper 2025-02



Figures in this publication were generated using Mathematica.

ISSN 1448-5109 (Online)

The Discussion Paper series is intended to make the results of the current economic research within the 
Reserve Bank of Australia (RBA) available to other economists. Its aim is to present preliminary results of 
research so as to encourage discussion and comment. Views expressed in this paper are those of the authors 
and not necessarily those of the RBA. However, the RBA owns the copyright in this paper.

© Reserve Bank of Australia 2025

Apart from any use permitted under the Copyright Act 1968, and the permissions explictly granted below, all 
other rights are reserved in all materials contained in this paper.

All materials contained in this paper, with the exception of any Excluded Material as defined on the RBA 
website, are provided under a Creative Commons Attribution 4.0 International License. The materials covered 
by this licence may be used, reproduced, published, communicated to the public and adapted provided that 
there is attribution to the authors in a way that makes clear that the paper is the work of the authors and the 
views in the paper are those of the authors and not the RBA.

For the full copyright and disclaimer provisions which apply to this paper, including those provisions which 
relate to Excluded Material, see the RBA website.

Enquiries:

Phone: +61 2 9551 9830 
Facsimile: +61 2 9551 8033 
Email: rbainfo@rba.gov.au 
Website: https://www.rba.gov.au



Boundedly Rational Expectations and the Optimality of Flexible
Average Inflation Targeting

Anthony Brassil*, Christopher G Gibbs** and Callum Ryan*

Research Discussion Paper
2025-02

April 2025

*Economic Research Department, Reserve Bank of Australia
**School of Economics, The University of Sydney

We thank Bruce Preston, Ippei Fujiwara, Nigel McClung, Matthew Read, and Jonathan Hambur
for helpful comments and suggestions. We thank seminar participants at the Bank of Finland and
the organisers of the Workshop of the Australasian Economic Society 2022, Econometric Society
Australasian Meetings 2023, and the 2023 Reserve Bank of Australia’s Quantitative Macroeconomics
Workshop for allowing us to present. The views expressed in this paper are those of the authors and
should not be attributed to the Reserve Bank of Australia. Any errors are the sole responsibility of
the authors.

Authors: brassila and ryanc at domain rba.gov.au and christopher.gibbs at domain sydney.edu.au

External Communications: rbainfo@rba.gov.au

https://doi.org/10.47688/rdp2025-02



Abstract

Expectations play a central role in the transmission of monetary policy, but how people form
expectations is widely debated. We revisit optimal monetary policy design in a model with behavioural
expectations that nest rational and adaptive learning beliefs as special cases, and approximates
several alternative expectations theories, such as myopic or level-k expectations. Optimal policy is a
weighted average inflation target plus adjustments for belief persistence and constraints faced by the
central bank (information frictions and the zero lower bound). Optimal policy is well-approximated
in all cases by flexible average inflation targeting, where we make explicit what average and flexible
mean.

JEL Classification Numbers: D83, D84, E31, E32, E52, E71

Keywords: optimal policy, behavioural macroeconomics, average inflation targeting, zero lower
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1. Introduction

There is agreement among economists that expectations are central to monetary policy design.
However, there is disagreement over how to model expectations, and prescriptions about the
optimal conduct of monetary policy can be sensitive to assumptions about expectation formation.
We formulate a general framework for expectation formation that nests or approximates alternative
expectation theories. We use this general environment to derive optimal target criteria under
commitment for a welfare-maximising central bank given different assumptions about the constraints
that it faces, such as an inability to observe contemporaneous economic conditions or the zero lower
bound (ZLB) on nominal interest rates. We characterise the dependence of optimal policy prescriptions
on features of the expectation formation process and provide recommendations that are independent
of how expectations are formed.

We find that if a central bank can credibly commit to a path for the policy rate, then the optimal
target criterion for a wide range of expectation formation theories is always a form of flexible average
inflation targeting (FAIT). We show that the average in FAIT should be a weighted average of current
and past inflation with declining weights over time. Monetary policymakers should respond most
forcefully to current inflation, while also committing to partially ‘make up’ for past inflation misses.
But the weighted average inflation target is also flexible because when a policymaker’s ability to
achieve this target is in question, it should seek to influence expectations more aggressively than
usual. A policymaker should commit to stronger-than-usual make-up policy when they are unable to
control the output gap to implement the current target, such as when they have imperfect information
about the state of the economy or the ZLB binds. In addition, they should pre-emptively deviate from
the target to steer expectations favourably when they anticipate future constraints, such as drifting
inflation expectations or the ZLB. Especially with respect to the ZLB constraint, policy is a ‘use it or
lose it’ proposition for all the expectations theories that we capture.

Central to understanding the advantage of a FAIT policy is recognising a symmetry between (i) the
history dependence that a central bank should optimally commit to when agents’ expectations are
near the full information rational expectations (FIRE) benchmark, and (ii) the history dependence in
agents’ own expectations that emerges under adaptive learning. In the former case, it is optimal to
manage agents’ expectations by committing to make up for past misses to targets by setting current
policy based on a weighted average of past outcomes. In the latter case, it is optimal to respond pre-
emptively to expected future outcomes by influencing agents’ expectations, which are themselves a
weighted average of past outcomes.1 In both cases, optimal policy requires flexible deviations from
the weighted average target to more aggressively influence expectations when policy is constrained.
Therefore, despite the different rationales for policy in each case, the optimal policy shares several
key features.

Our agnostic approach to expectations allows us to derive a more broadly applicable optimal policy
framework, encompassing much of the existing literature’s results, while also characterising novel
environments not yet explored. Specifically, we model expectations as a weighted average of adaptive
learning and FIRE, where the rational expectations take into account the learning expectations, and

1 Eusepi and Preston (2018) and Eusepi, Giannoni and Preston (2018) also point to this feature of adaptive learning
models relative to rational expectations models when analysing unconstrained optimal policy. We show how this insight
generalises to several novel environments.
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where the desired path of the policy rate is credible and known to all. We show that by varying
the weight placed on rational expectations relative to learning, and by varying the speed of the
learning, that we capture relevant dimensions of several types of expectation formation models within
a standard New Keynesian economy. The expectation models include adaptive learning as in Evans
and Honkapohja (2001) and Preston (2005), behavioral expectations as in Gabaix (2020), and key
elements of level-k reasoning as in Angeletos and Lian (2018), Farhi and Werning (2019), Angeletos
and Huo (2021) and Evans, Gibbs and McGough (forthcoming). Each of these different expectations
models lies as a special case that we can recover or closely approximate within our more general
setting, and allows for characterisation of optimal policy in novel settings.

The general target criteria that we derive constitute a formal theory for a FAIT policy framework. We
start from the primitive that monetary policy has a statutory mandate to stabilise inflation and real
activity. Policy, therefore, seeks to minimise a loss function over squared deviations in inflation from
a target and squared deviations in the output gap, which captures the welfare theoretic loss function
for the representative household. The general target criterion we derive for this loss function consists
of two distinct pieces: 1) a weighted-average inflation target (WAIT), and 2) prescriptions for flexible
deviations from WAIT that change based on the speed of learning or the constraints faced by the
central bank. In the weighted average part of FAIT, the weights that a policymaker places on current
versus past observations are determined by how rational private sector expectations happen to be
and decline geometrically over time. When there is learning, optimal policy requires flexible deviations
from what is implied by WAIT alone. The effect of shocks and policy today may be extrapolated far
into the future beyond their natural or intended duration. This creates the rationale for deviating from
the policy implied by past data alone to pre-empt expected deleterious drifts in agents’ expectations
caused by shocks, or to pre-emptively generate favourable drifts in expectations through policy.

Flexible deviations from WAIT are also required when information constraints or the ZLB prevent the
central bank from implementing its desired level of demand in the economy. In these situations, again,
the central bank should be flexible by more aggressively steering expectations. It should commit to
stronger make-up policy than usual, and it should act pre-emptively to influence expectations if
it expects the ZLB might bind in the future. This is the rationale behind forward guidance policy
in Eggertsson and Woodford (2003), where under FIRE the promise of future policy alleviates the
constraints on policy today. We show that this type of policy is desirable regardless of how inflation
and output expectations are formed.

We demonstrate the robustness of the shared features of optimal policy by running two horse races
comparing a range of different inflation and output gap policy targets. We first show that we can
approximate the optimal target criteria using simple weighted-average criteria over past inflation and
output gap outcomes, which are superior to price-level targeting, inflation targeting, or arithmetic
average inflation targeting using a fixed window when agents are boundedly rational. We then
compare how these competing criteria perform when policymakers do not know how expectations
are formed. Specifically, we choose a single calibration for each different target criteria to maximise
average welfare across different economies with expectations ranging from FIRE to full adaptive
learning. We find that simple implementations of FAIT that target geometrically declining averages
of inflation (WAIT) and the output gap (which captures some aspects of flexibility required in optimal
policy) are the most robust, generating similar losses to the fully optimal policy regardless of how
expectations are formed.
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1.1 Literature review

We take a novel approach to the study of FAIT by using target criteria. Much of the policy work
on this topic has focused on the study of modified interest rate rules that include averages of
past inflation as arguments. For example, papers cited in strategy reviews by the Federal Reserve
(e.g. Arias et al 2020), European Central Bank (e.g. Work Stream on the Price Stability Objective 2021)
and Bank of Canada (e.g. Dorich, Mendes and Zhang 2021) have taken this approach.

There are several drawbacks to interest rate rule-based analysis. Svensson and Woodford (2005)
argue that interest rate rules are a fragile and non-transparent way of specifying a policy framework.2

Interest rate rules are model specific and the mapping between policy framework and an interest rate
rule is not clear cut. In some cases, different rules can generate the same equilibrium outcomes. For
example, Eskelinen, Gibbs and McClung (2024) show that unconditional optimal policy in the standard
New Keynesian model can be implemented with an interest rate rule that responds to a lagged interest
rate term, similar to interest rate smoothing, or to a weighted average of past inflation, similar to
some average inflation targeting specifications in the literature. In other cases, slightly different
rules generate drastically different equilibria. For example, Honkapohja and McClung (2024a) point
out several examples of the fragility of interest rate rule specification that try to capture average
inflation targeting (AIT) under rational expectations and adaptive learning. They show that small
changes to the number of periods included in the inflation average can lead to drastically different
policy outcomes. It is therefore difficult to draw robust conclusions about policy frameworks from a
comparison of interest rate rules.

In contrast, target criteria are general. They do not depend on the statistical properties or the number
of economy-wide shocks that the central bank faces. They depend only on how beliefs are formed
and on the constraints the central bank encounters when implementing its desired policy. In addition,
policy is specified as a target for endogenous variables, that is, a set objective for the evolution of
economic outcomes policymakers hope to achieve. Target criterion are inherently less constraining
than interest rate rules because they allow (subject to the ZLB) any choice for the path of policy rate
necessary to achieve their goals. Communication of policy in such a framework is, therefore, forward
looking and data dependent, which reflects the way policymakers actually communicate.

Optimal target criteria for both unconstrained and constrained policymakers have been widely studied
under FIRE. The theoretical justification for inflation targeting (e.g. Giannoni and Woodford 2005),
price level targeting (e.g. Giannoni 2014) and inflation forecast targeting (e.g. Svensson and
Woodford 2005) policy frameworks rest on this work. In addition, Eggertsson and Woodford (2003)
extend optimal target criteria to the case of optimal policy at the ZLB, and others have studied optimal
policy under imperfect central bank information (e.g. Clarida, Galí and Gertler 1999; Woodford 2010).
We extend these works by studying a more general model of expectations. We show that some
conclusions from the FIRE analysis are knife edge. Small departures from the FIRE assumption imply
a new optimal policy framework: FAIT.

2 There has been a gradual evolution of the language describing different characterisations of monetary policy. Svensson
and Woodford define a monetary policy rule broadly as a prescribed guide for monetary policy. Target criterion and
interest rate rules are two different ways of specifying a policy rule in their framework. In more recent treatments in the
literature, there is no distinction made between interest rate rules and policy rules. The two are synonymous. We adopt
the term ‘policy framework’ to capture the broader notion of a general policy that may be implemented with a target
criterion or an interest rate rule.
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Optimal target criteria for an unconstrained policymaker have been studied in the adaptive learning
literature, such as in Molnár and Santoro (2014), Eusepi et al (2018) and Eusepi, Giannoni and
Preston (2024). These papers establish that optimal policy shares some features with the optimal
target criterion from the FIRE analysis, in which it is optimal to engineer periods of price level
overshooting or make-up policy in certain circumstances. We extend these works by approximating
them within our general model of expectations and by deriving optimal target criteria in settings with
imperfect information and the ZLB. We show that the similarity in optimal policy under both adaptive
learning and FIRE carries over to other general forms of bounded rationality, and can be captured by
a FAIT policy framework.

A related set of studies derive optimal target criteria in the unconstrained case under other kinds
of deviations from FIRE. Gabaix (2020) and Benchimol and Bounader (2023) derive optimal policy
when agents have myopic expectations and over-discount the future. In Dupraz and Marx (2023),
agents have finite planning horizons and are similarly myopic, but also learn about long-run outcomes,
which adds a backward-looking component to expectations. Gasteiger (2014) and Gasteiger (2021)
analyse optimal policy in a heterogeneous expectations setting, where some agents have rational
expectations and others are adaptive.3 We can approximate the key elements of these models for
expectations within our general framework, and extend the optimal policy analysis by deriving optimal
target criteria in the constrained case, when the central bank has imperfect information or the ZLB
can bind.

Outside of the unconstrained case, there are several papers that explore optimal policy at the ZLB
in non-FIRE settings. Eusepi, Gibbs and Preston (2024) and Evans et al (forthcoming) both study
optimal forward-guidance policy when agents must learn about the general equilibrium implications
of policy. The former takes an adaptive learning approach, while the latter combines adaptive learning
with level-k thinking. Dupraz, Le Bihan and Matheron (2024) analyse make-up policy when agents
have finite planning horizons. Budianto, Nakata and Schmidt (2023) allow for both FIRE and a
Gabaix (2020) style of myopic expectations, and compare delegated loss functions for a central
bank optimising under discretion. In contrast to these papers, we derive optimal target criteria under
commitment analytically, which shows that a particular kind of FAIT framework can capture the
features of optimal policy at the ZLB that this prior work explores.

Our general framework also lets us approximate other models for expectations that feature some kind
of myopia and a backward-looking learning process, for which optimal target criteria have not been
derived. For example, Angeletos and Lian (2018), Farhi and Werning (2019) and Angeletos, Huo and
Sastry (2021) all propose models with some combination of level-k reasoning, heterogeneous private
information, and/or learning. Importantly, we characterise the unconstrained, imperfect central bank
information, and ZLB cases under all of these different expectations assumptions. Because our
framework nests a range of different specifications, we are also able to find the robustly optimal
policy framework, in circumstances where policymakers do not know the true model for expectations.

Finally, there is a related adaptive learning literature that examines whether optimal target criteria
derived under FIRE generate equilibria that are learnable. This literature finds that it depends on how

3 Di Bartolomeo, Di Pietro and Giannini (2016) and Hagenhoff (2021) also consider a heterogeneous expectations
framework, but their focus is on how heterogeneity in expectations across agents affects price and consumption
dispersion, altering the micro-founded loss function. We are instead interested in capturing how a broad range of different
expectations models affect optimal aggregate outcomes, so we assume the standard loss function.
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the optimal target criteria is implemented. Optimal target criteria do not imply unique interest rate
rules. Evans and Honkapohja (2003), Preston (2006), Orphanides and Williams (2007) and Evans and
McGough (2010) show that different interest rate rules that react to different endogenous quantities,
which implement the same equilibrium under FIRE, may have different stability properties under least
squares learning. Honkapohja and Mitra (2020) study price level targeting under learning and varying
credibility. The optimal targeting criteria we study here, however, are derived taking learning into
account as a constraint, making expectational stability an endogenous concern of the policymaker.
Our robust policy analysis finds versions of the FAIT framework that ensure expectational stability
even when the policy rule is misspecified.

2. The Model

We study the standard New Keynesian environment of Woodford (2003) with sticky prices and
monopolistically competitive firms. However, we depart from the standard environment by assuming
that expectations need not be rational and may encompass a wide range of beliefs formation
strategies. To accommodate this generality, we log-linearly approximate aggregate output and
inflation dynamics as

xt = ÎEt

∞∑
T=t

β T−t
[
(1−β )xT+1 −σ−1 (iT −πT+1 − rn

T
)]

(1)

πt = β ÎEtπt+1 +κxt +ut (2)

where xt is the output gap, πt is inflation, it is the nominal interest rate controlled by the central bank,
rn
t is an exogenous real rate of interest (which could reflect movements in demand and productivity),

ut is a cost-push shock, and ÎEt represents potentially non-rational expectations. Equation (1) is the
infinite-horizon IS curve, which captures household demand under arbitrary beliefs. Under FIRE, this
equation collapses to the familiar two-period representation. However, the form here distinguishes
the effect of longer-term income and real interest rate expectations on consumption decisions, which
are critical when the central bank is constrained in the present.4

For Equation (2), the Phillips curve, we use the common two-period approximation, which
approximates the effect on pricing decisions of expected inflation and output gaps in all future
periods using just the one-period-ahead inflation expectation. Appendix C.1 provides the full infinite-
horizon form of the Phillips curve (also called the anticipated utility solution in the adaptive learning
literature; under FIRE, it is equivalent to the two-period form), and Appendices C.2 to C.5 replicate
all of our main results in that setting. We choose to use the two-period approximation for the Phillips
curve in the main analysis because the key results are not sensitive to the choice (in contrast to
the choice of IS curve representation) and are easier to interpret. It also allows us to more closely
nest/approximate the reduced-form Phillips curve formulations of the myopia and anchoring model of
Angeletos and Huo (2021), the hybrid New Keynesian Phillips curve, and older works in the adaptive
learning literature such Evans and Honkapohja (2003) and Molnár and Santoro (2014).

4 This is especially important because we are going to make different assumptions about the formation of output gap and
interest rate expectations. In the two-period ‘Euler equation’ representation, nominal interest rate expectations do not
even appear. See Preston (2005) for a detailed discussion of the two representations.
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Beliefs of the private sector.We put forward a general notion of belief formation. We do not intend
for our formulation to be a theory of expectation formation on its own; however, many papers have
done so using similar approaches, such as in Brock and Hommes (1997), Branch and McGough (2009)
and Cole and Martínez-García (2023). Our goal is to write beliefs in such a way that for specific
calibrations we recover distinct expectation theories put forward in the literature.

We assume that some fraction λ ∈ [0,1] of agents possess FIRE, and a fraction 1−λ are adaptive
learners, in that they use a statistical model to forecast future outcomes by extrapolating from past
observations.5 Aggregate expectations of future inflation and output gaps are

ÎEtπT = λ IEtπT +(1−λ )IEl
tπT (3)

ÎEtxT = λ IEtxT +(1−λ )IEl
txT (4)

where IEt is the FIRE forecast and IEl
t denotes the learners’ forecast.

We assume that adaptive learners forecast inflation and the output gap using an unobserved
components state-space model, which they estimate using a steady-state Kalman filter. Inflation
and the output gap are assumed to be driven by an unobserved persistent component, with an
autoregressive coefficient of ρ, and an iid component. Learners use observations up to period t −1
to estimate the persistent component, where ωz

t−1, z ∈ {π,x}, denotes period t ’s state estimate.
Learners use this estimate to forecast future variables zT , T ≥ t +1. Their expectations for πT and
xT , T ≥ t +1, are therefore given by

IEl
tπT = ρT−tωπ

t−1 (5)

IEl
txT = ρT−tωx

t−1 (6)

where the steady-state gain coefficient g reflects their beliefs of the relative variance of the perceived
unobserved persistent and transitory shocks in the state-space model. This procedure implies the
updating rules

ωπ
t = ρωπ

t−1 +ρg
(
πt −ωπ

t−1
)

(7)
ωx

t = ρωx
t−1 +ρg

(
xt −ωx

t−1
)

(8)

We assume for simplicity that the parameters relevant for beliefs – λ , ρ and g – are the same for
both households and firms, and for both inflation and the output gap.

For expectations of the nominal interest rate, we assume that everyone has rational expectations
over its path.6 This is equivalent to assuming that the policymaker communicates its expected policy
rate path each period, and that path is believed by all agents. The distinction between the formation
of nominal interest rate expectations and the formation of output gap and inflation expectations is

5 We focus on how forward- or backward-looking monetary policy should be to achieve optimal aggregate outcomes
and do not consider distributional consequences that may occur due to heterogeneity in expectations. We maintain
a representative agent assumption where the representative decision-maker takes a weighted average of forecasts
from two different models: the correct structural model, and a reduced-form model which is re-estimated each period.
Therefore, the representative agent assumption is maintained. This is the approach taken in Gibbs (2017) and Gibbs
and Kulish (2017).

6 Note that we still allow for drift in longer-term real interest rates due to drifting beliefs about future inflation.
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common in the existing literature on make-up policy.7 If the policymaker communicates its expected
path for the nominal interest rate, then this path is immediately available to households and firms,
whereas determining the future output gap and inflation implications of that path involves much more
sophisticated general equilibrium reasoning. Even if the central bank’s communication of its interest
rate expectations is not perfect, the effect of interest rate expectations on household decisions will
often flow through fixed rates and asset prices, which are determined by sophisticated financial
market participants who are highly forward looking and likely to form similar expectations to the
central bank.8

Beliefs of the policymaker. We assume throughout that the central bank possesses FIRE and
seeks to maximise the standard welfare function

W ≡−IE0

∞∑
t=0

β t
(

π2
t +αx2

t

)
(9)

which is a quadratic approximation to household welfare when α = κ/θ . When choosing policy, the
policymaker takes household decisions and beliefs as constraints:

πt = λβ IEπt+1 +(1−λ )βρωπ
t−1 +κxt +ut (10)

xt = (1−β )
∞∑

T=t
β T−t

(
λ IEtxT+1 +(1−λ )ρT+1−tωx

t−1

)
− 1

σ

∞∑
T=t

β T−t
(

IEt iT −λ IEtπT+1 − (1−λ )ρT+1−tωπ
t−1 − IEtr

n
T

) (11)

ωπ
t = ρωπ

t−1 +ρg
(
πt −ωπ

t−1
)

(12)
ωx

t = ρωx
t−1 +ρg

(
xt −ωx

t−1
)

(13)

The policymaker’s problem. The optimal policy problem is to choose the sequence
{πt ,xt ,ω

π
t ,ω

x
t , it}

∞
t=0 that maximises the welfare function (9) subject to the constraints (10) to (13)

imposed by private sector equilibrium behaviour. We assume that the policymaker is credible and
pursues optimal policy from a timeless perspective, in that they do not seek to exploit the exogeneity
of the initial conditions. Instead, the policymaker in the initial period acts according to the rule that
would have been optimal had they committed to it in advance.9

Nesting/approximating other models. The pay-off for the particular way we model beliefs is
in nesting the structural equations implied by most of the prominent expectations theories in the
literature. For example, when

7 Farhi and Werning (2019) assume that households perfectly observe future policy rates, but deduce the consequences
for inflation and output gap expectations using level-k reasoning. Similarly, Dupraz et al (2024) model households with
finite-planning horizons, but who save and borrow based on financial prices determined by intermediaries with fully
rational expectations over nominal interest rates. Quantitative evaluations of make-up policy by Federal Reserve Board
staff have have used versions of their semi-structural model (FRB-US) in which financial market participants have model-
consistent expectations, even while households and firms may not be rational (Bernanke, Kiley and Roberts 2019; Hebden
et al 2020).

8 There are clearly interesting questions about what occurs when the central bank lacks credibility over the path of
interest rates that it plans to implement. See, for example, Eusepi et al (2018) and Eusepi, Giannoni and Preston (2024).
Our results represent a best case scenario with respect to central bank credibility regarding the policy rate path. In
Appendix B.1, we discuss how our results might be affected if policy rate expectations are not entirely rational.

9 In Appendix B.2, we use a simple two-period model to explore what optimal policy under discretion would look like with
our hybrid specification for expectation formation.



8

• FIRE (λ = 1): the system reduces to structural equations implied by full information rational
expectations:

πt = β IEtπt+1 +κxt +ut

xt = IEtxt+1 −
1
σ
(it − IEtπt+1 − rn

t )

• myopia and level-k (0< λ < 1 and g= 0): the system reduces to a model that is ‘over-discounted’
such as in Angeletos and Lian (2018) or Gabaix (2020):

πt = λβ IEtπt+1 +κxt +ut

xt = (β +λ (1−β ))IEtxt+1 −
1
σ
(it −λ IEtπt+1 − rn

t )

• hybrid New Keynesian Phillips curve (0 < λ < 1 and g = 1): the system reduces to a model with
a hybrid New Keynesian Phillips curve, or one that features elements of myopia and anchoring
as in Angeletos and Huo (2021):

πt = λβ IEtπt+1 +(1−λ )βρπt−1 +κxt +ut

xt = (1−β )
∞∑

T=t

β T−t
(

λ IEtxT+1 +(1−λ )ρT+1−txt−1

)
− 1

σ

∞∑
T=t

β T−t
(

IEt iT −λ IEtπT+1 − (1−λ )ρT+1−tπt−1 − IEtr
n
T

)
• adaptive learning (λ = 0 and 0 < g < 1): the system reduces to a model of adaptive learning:

πt = βρωπ
t−1 +κxt +ut

xt =
1−β

1−βρ
ρωx

t−1 +
1

σ(1−βρ)
ρωπ

t−1 −
1
σ

IEt

∞∑
T=t

β T−t(iT − rn
t )

By nesting these competing assumptions, we can compare optimal policy within a shared framework.

3. Optimal Policy – The Unconstrained Case

We start with the unconstrained optimal policy problem given by Equations (9) to (13). The
policymaker is free to choose any policy today and into the future that they would like. Appendix A.1
contains the full derivations for all results; here we summarise the key equations to build intuition.

Monetary policy in this case is a powerful tool even with bounded rationality because the path of
interest rates is common knowledge. If the central bank only faces the demand shock, then it is able
to perfectly stabilise the economy as in the standard FIRE case.

Result 1 (IS curve irrelevance). The IS curve is not a constraint when the path of interest rates
is known and credible. Demand shocks (and other shocks that do not affect the gap between the
efficient and flexible-price levels of output, such as productivity shocks) may be perfectly offset with
current and promised changes in the interest rate, generating no welfare loss.
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The trade-off for the central bank, therefore, lies with ‘cost-push’ shocks (i.e. shocks that do affect
the gap between the efficient and flexible-price levels of output).

To characterise optimal policy for cost-push shocks, we take the first-order conditions with respect to
πt and xt for the central bank’s policy problem and eliminate the Lagrange multiplier on the Phillips
curve:

α
κ

xt =− 1
1−λL

πt +ρg
1

1−λL
µωπ

t (14)

where L is the lag operator and µωπ
t is the Lagrange multiplier on the updating rule for

learners’ inflation expectations. The term µωπ
t represents the benefit of increasing learners’ inflation

expectations and is determined by the first-order condition with respect to ωπ
t :

µωπ
t = βρ(1−g)IEt µ

ωπ
t+1 −β 2(1−λ )ρIEt

(
1

1−λL
πt+1 −g

1
1−λL

µωπ
t+1

)
(15)

Solving Equation (15) for µωπ
t gives

µωπ
t =−(1−λ )ρΩ

1−λL
1−ζ1L

IEt
1

1−ζ−1
2 L−1

1
1−λL

πt+1 (16)

where Ω≡ β 2ζ−1
2

ρβ (1−g)+(1−λ )gρ2β 2 and ζ1 and ζ2 are the roots of the characteristic polynomial associated

with Equation (15).10

Result 2 (Unconstrained optimal target criterion). The optimal target criterion is
α
κ

xt =− 1
1−λL

πt︸ ︷︷ ︸
WAIT

−(1−λ )gρ2Ω
1

1−ζ1L
IEt

1

1−ζ−1
2 L−1

1
1−λL

πt+1︸ ︷︷ ︸
Pre-emption

(17)

which is composed of two distinct parts:

1. a weighted-average inflation target (WAIT)

2. pre-emptive policy actions based on expected future trade-offs between inflation and output
gaps due to drifts in learning beliefs.

The WAIT term represents a commitment to the forward-looking rational agents. The policymaker
promises to adjust the output gap in response to a weighted average of past inflation. Shocks today
that generate misses in the inflation target imply future policy adjustments, lessening the equilibrium
impact of any shock.

The pre-emption term represent the management of backward-looking adaptive learning expectations
and is present if g > 0. The policymaker forms a belief about how inflation expectations are likely

10 That is, ζ1 and ζ2 are the solutions to the quadratic equation(
ρβ (1−g)+(1−λ )gρ2β 2

)
ζ 2 − (1+λρβ (1−g))ζ +λ = 0

For reasonable calibrations, ζ1 is generally very close to λ and reflects the effectiveness of make-up commitments on
current period inflation. The reciprocal of the explosive root ζ−1

2 reflects the persistence of the effect of current policy
on future inflation (via beliefs). It is decreasing in λ and g, and increasing in ρ.
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to evolve in the future given current and past misses in inflation, which are propagated through
the adaptive learning component of beliefs. Drifts in inflation change the trade-off between future
inflation and output gaps. Additional policy today can pre-empt future undesirable movements in this
trade-off, or engineer more favourable ones.

A key feature of the optimal target criterion (17) is that it encapsulates the target criteria from a range
of different primitive assumptions about how agents form beliefs as special cases. Table 1 summarises
the target criterion for the special cases discussed in the previous section. Optimal policy in this case
is WAIT + pre-emption. The table, however, includes a fixed belief case of λ = 0 and g = 0, which is
of interest because it recovers the same target criterion that is implied under FIRE for discretionary
policy. This case reveals that so long as expectations can be influenced, that is, g > 0 and/or λ > 0,
it makes sense to deviate from the standard FIRE optimal discretion policy, that is, from inflation
targeting.

Table 1: Special Cases
Case Target criteria Policy
FIRE, λ = 1 α

κ xt =−pt PLT
Hybrid NK PC, 0 < λ < 1, g = 1 Equation (17) WAIT + pre-emptive
Myopia/level-k, g = 0 α

κ xt =− 1
1−λL πt WAIT

Adaptive learning, λ = 0 α
κ xt =−πt −gρ2β 2IEt

1
1−ζ−1

2 L−1 πt+1 IT + pre-emptive

Fixed beliefs, λ = 0,g = 0 α
κ xt =−πt IT

Notes: Optimal target criteria in special cases. No terms from optimal target criteria drop out for Hybrid NK PC (New Keynesian Phillips
curve) parameters. PLT stands for ‘price level targeting’; IT stands for ‘inflation targeting’.

3.1 Mechanics of optimal policy

To see how policy works in practice in response to a shock, let the cost-push shock follow a first-order
autoregressive process such that EtuT depends only on ut for T ≥ t. Recall from Equation (16) that
the Lagrange multiplier on learners’ inflation expectations µωπ

t is a function of past and current
expectations of inflation at different horizons. In Appendix A.1, we show that, in the optimal
equilibrium solution, this multiplier µωπ

t can be written

µωπ
t = (1−λ )

(
axxt −aωρgπt −aωρ(1−g)ωπ

t−1 −auut
)

(18)

for some positive constants ax, aω and au. Sensibly, optimal policy aims to lower learners’ inflation
expectation when inflation itself is high, when their expectations ωπ

t are high, or when the cost-push
shock is positive. This desire for lower inflation though is tempered by a desire to close the output
gap, which gives rise to the positive relationship with xt . Using Equation (18), we can write the optimal
target criterion (17) (in equilibrium) as

α
κ

xt =−ϕ
1

1− γL

(
πt +νωωπ

t−1 +νuut
)

(19)

where γ ≡ λ
1−(1−λ )ρgax

κ
α
, ϕ ≡ 1+(1−λ )ρ2g2aω

1−(1−λ )ρgax
κ
α
, νω ≡ (1−λ )ρ2g(1−g)aω

1+(1−λ )ρ2g2aω
, and νu ≡

(1−λ )ρgau
1+(1−λ )ρ2g2aω

.

Equation (19) reveals that optimal policy adjusts the output gap in response to an exponentially
weighted average of current and past inflation, ωπ

t , and cost-push shocks, where the weight on lag j
is γ j. In addition, relative to FIRE, the central bank increases its response to current inflation while
also responding to learners’ inflation expectations ωπ

t−1 – pre-emption – because both affect future
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inflation due to drifting inflation expectations. The central bank also must respond separately to the
cost-push shock ut (beyond its effect on current inflation). How aggressive or accommodative policy
is with respect to past inflation, expectations, or the shock depends on λ and g, that is, how quickly
these interventions show up in expectations.

Figure 1 shows the optimal response to a cost-push shock as λ is varied compared to policy under
an inflation-targeting (IT) regime (γ = νω = νu = 0 and ϕ = 1). IT here is equivalent to the optimal
targeting criteria implied under rational expectations discretion.

Figure 1: Flexible IT versus Optimal Policy
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Notes: Response to a 1 per cent cost-push shock, which occurs in period 1. Parameter values are ρ = 0.95, g = 0.08,
β = 0.99, σ = 1, κ = 0.1, α = κ/7.87.

Optimal policy for a wide range of λ s implies initially a muted response followed by a more aggressive
policy in the medium run compared to IT. In the high λ cases, policy reflects the make-up quality
of WAIT. Higher inflation now means a higher interest rate in the future even as inflation falls. The
expectation of this policy is capitalised into current expectations blunting the impact of the shock and
lessening the need to initially raise interest rates aggressively.

In the low λ cases, policy reflects the different way a shock propagates when there is learning.
Backward-looking agents’ expectations are less sensitive to the shock on impact because their
expectations are anchored to the past. This means the shock has less of an impact initially,
which allows for a muted interest rate response by policymakers. However, the learning process
endogenously propagates the shock as expectations are revised. This leads to a growing inflation
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impulse over time because of rising ωπ
t . The optimal policy response to this growing impulse is a

higher interest rate in the medium run to constrain inflation and output. The optimal policy, therefore,
for a wide range in λ follows the same prescription: muted on impact and more aggressive over the
medium run. This is true even though the rationale for why the central bank should enact such a
policy changes as λ is varied.

Optimal policy only departs from this pattern when λ is close to zero. Here, the WAIT term is nearly
absent and pre-emption is the dominant feature of policy. Stronger policy is required in these cases
initially to blunt the propagation of the shock in beliefs. This represents the flexibility required by
optimal policy in FAIT. If a policymaker expects expectations to drift, that is, become unanchored, in
response to a shock, then more aggressive policy is required now.

For moderate values of λ , however, the pre-emption motive is secondary to WAIT. Figure 2 illustrates
how pre-emption affects policy when λ = 0.5 as we vary g making expectations more or less
responsive to the shock. The figure shows WAIT (γ = λ , ϕ = 1 and νω = νu = 0) compared to
optimal policy. The difference between WAIT and optimal policy is pre-emption. The WAIT policy
delivers lower interest rates and real rates in each case. Pre-emption on the other hand increases
the current response as g increases to counter the greater influence of the shock in causing drifts in
learned expectations.

Figure 2: WAIT versus Optimal Policy
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Notes: Response to a 1 per cent cost-push shock, which occurs in period 1. Parameter values are λ = 0.5, ρ = 0.95,
β = 0.99, σ = 1, κ = 0.1, α = κ/7.87.
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There are of course other scenarios where even with moderate values of λ pre-emption becomes
more central. For example, when shocks are very persistent or the central bank expects to be
constrained in the future such as when the ZLB binds, which we explore in Section 4.

3.2 The optimal average inflation target

The continued importance of WAIT relative to pre-emption shown in Figure 2 when λ is small is
surprising. The reason it occurs is that the expectations of adaptive learners in our set-up evolve as
a weighted average of current and past inflation,

ωπ
t−1 =

ρg
1−ρ(1−g)L

πt−1

Pre-emption, therefore, is an optimal response to a weighted average of past inflation. It turns out
that that weighted average implied by the pre-emption component of optimal policy in equilibrium
shares many features with the original WAIT component of optimal policy. In fact, it is possible to
rewrite optimal policy as a simple WAIT policy with different weights that share a similar geometric
decay over time.

To illustrate, substitute the weighted-average expression above for adaptive learning beliefs into the
rewritten optimal target criterion (19) and rearrange:

xt =−κϕ
α

(
ψ

1− γL
+

1−ψ
1−ρ(1−g)L

)
πt −

κϕ
α

νu
1

1− γL
ut (20)

where ψ ≡ 1− ρg
ρ(1−g)−γ νω . The average inflation measure that a policymaker should target is a

weighted average of two exponentially weighted averages of current and past inflation.

Figure 3 illustrates the similarities in the weights by plotting the term in front of πt from Equation (20)
for different values of λ and g. On the left side, we plot the optimal weights for different values of λ
when g = 0 and ωπ

t = 0. This calibration reflects models with myopia like Gabaix (2020) and it has no
pre-emption component to policy. The high weight placed on current inflation reflects α, the welfare
weight on the output gap, which here is set to the welfare theoretic value of κ/θ . Higher values of α
scale these weights profiles down while lower values raise them. When λ = 1, we have the optimal
policy under FIRE: price level targeting. Equal weight is given to all past inflation outcomes. When
λ = 0, there is no value to commitment and we get the rational expectations discretion outcome.

On the right side of Figure 3, we add a positive gain (g > 0) activating the pre-emption term. The
optimal target criterion again responds to a weighted average of inflation. Pre-emption causes the
weights to be higher depending on the specific level of g and λ . However, the general profile of the
weights remains the same with a geometric decline over time. Optimal policy tracks a qualitatively
similar weighted average of inflation when most agents have FIRE expectations and when most do
not. In Section 5, we consider whether there is a single calibration for this weighted average that
performs well regardless of how expectations are formed.
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Figure 3: Optimal Weights on Inflation
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Notes: Plots coefficients in the power series in the first term of Equation (20), which represent the weight placed on
current and lags of inflation when implementing optimal policy. Parameter values are ρ = 0.95, β = 0.99, σ = 0.5,
κ = 0.1, α = κ/7.87.

In addition, it is important to note that the profiles of optimal weights are very different to the
arithmetic averages that many researchers have studied when modeling average inflation targeting
such as in Eo and Lie (2020) or Honkapohja and McClung (2024b). Arithmetic averages imply uniform
weights over a fixed number of lags and zero thereafter. We show in Section 5 that arithmetic averages
do a poor job approximating the optimal weights, while simple geometric averages approximate
optimal weights well, even when the geometric weights are significantly misspecified relative to the
optimal weights.

4. Optimal Policy – The Constrained Case

We now turn to the case where the policymaker faces a constraint that prevents it from implementing
a desired level of the output gap period by period. We consider two ways in which this might occur:
1) imperfect information, and 2) the zero lower bound on nominal interest rates. Again, Appendix A.2
provides detailed derivations, while we focus here on the key equations and intuition.

4.1 Imperfect central bank information

Let ICB
t denote the central bank’s information set in period t and let It denote the full information

set. Let zT |t denote the best estimate of any variable zT conditional on ICB
t , while IEtzT continues to

denote the expectation conditional on the full information set It . We now assume

It−1 ⊂ ICB
t ⊂ It



15

In other words, the central bank does not possess all information in the current period necessary to
implement optimal policy. The nominal interest rate it must be set each period based on incomplete
information ICB

t , that is,

it = it|t (21)

For our purposes, it does not matter what information is missing. The key is that any missing
information relevant to policy represents a constraint on current policy choices.

The optimal policy problem is to choose the sequence {πt ,xt ,ω
π
t ,ω

x
t , it}

∞
t=0 that maximises the

welfare function (9) subject to the constraints (10) to (13) imposed by private sector equilibrium
behaviour and the informational constraint (21).11

The first-order condition of the policymaker’s problem with imperfect information with respect to it is

µ i
t =

1
σ

t∑
j=0

µx
t− j (22)

µ i
t|t = 0 (23)

where µ i
t is the Lagrange multiplier on the information constraint (21). Condition (22) shows that

the benefit of lowering the nominal interest rate is given by the benefit of raising the output gap
in the current period, and in previous periods through the fact that agents anticipate future policy
responses. Condition (23) shows that the central bank should try to set the nominal interest rate
so that there is no benefit to increasing or decreasing it, given the information on hand. The main
difference from the unconstrained case is that demand shocks are no longer irrelevant.

Result 3 (IS curve relevance). The central bank cannot perfectly offset shocks to the IS curve when
It−1 ⊂ ICB

t ⊂ It .

In the unconstrained case, when ICB
t = It , then µ i

t = µ i
t|t = 0 and so µx

t = 0. A shock to the IS curve
is irrelevant. When ICB

t ⊂ It , the best the central bank can do is µ i
t|t = 0, and so µ i

t ̸= 0 and µx
t ̸= 0

in general, which makes the IS curve a constraint on policy.

To see how this affects optimal policy, we take the expectation of (22) conditional on ICB
t and using

µx
t− j|t = µx

t− j for all j ≥ 1 gives

µx
t|t =−

t∑
j=1

µx
t− j (24)

which implies that the central bank commits to an it that balances the estimated costs of an off-target
output gap in period t, µx

t|t , against the reduced losses in the periods before t due to expectations of
it , −

∑t
j=1 µx

t− j. Equation (24), therefore, describes a new intertemporal trade-off, where the central
bank cannot set the desired interest rate it would like, ex post, while considering ex ante how its
corrections for any errors it makes interact with private sector expectations.

11 The private sector continues to make decisions based on the full information set, It . This means that when an unexpected
shocks occurs, their expectations of future policy will adjust before the central bank moves the actual policy rate. This
is what underlies the ‘automatic stabiliser’ mechanism discussed below.
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Taking the first-order conditions with respect to πt and xt , eliminating the Lagrange multiplier on the
Phillips curve, and substituting in µx

t = σ
(

µ i
t −µ i

t−1

)
from (22) gives

α
κ xt +

σ
κ µ i

t =− 1
1−λLπt +ρg 1

1−λL µωπ
t

+
(

λ
β

κ
σ

1
1−λL +

λ
β (1−β )+1

)
σ
κ µ i

t−1 +
ρg
κ µωx

t
(25)

which generalises Equation (14).

The information constraint implies three additional terms. The new term in µ i
t on the left-hand

side is zero in expectation and represents the extent to which a shock causes the central bank
to ‘miss’ its intended target for the output gap. The first new term on the right-hand side – in
µ i

t−1 – is an additional commitment requirement of optimal policy. It indicates how the central bank
should respond to past misses caused by unexpected shocks, that is, additional make-up policy. The
commitment to respond to misses in the future shifts current expectations, thereby dampening the
costs of the shock. In this way, commitment under imperfect information acts as a kind of ‘automatic
stabiliser’. Finally, the Lagrange multipliers on learners’ inflation and output gap expectations are now

µωπ
t =−(1−λ )ρΩ 1−λL

1−ζ1L IEt
1

1−ζ−1
2 L−1

1
1−λLπt+1

+(1−λ )ρΩ
(

λ
β

1
1−ζ−1

2 λ
1

1−ζ1L −
1

β (1−βρ)
1−λL
1−ζ1L

)
µ i

t

(26)

µωx
t =−(1−λ )

(1−β )ρβ
1−βρ

σ µ i
t (27)

The new components in these expressions, that is, the terms in µ i
t , dampen the extent of optimal

make-up policy, by accounting for its effect on learners’ future expectations.

Substituting the Lagrange multipliers (26) and (27) into (25), we can derive the optimal target
criterion under information constraints.

Result 4 (Information constrained optimal target criterion). Recall from Equation (17) that the
optimal target criterion under full information is π̃t = 0, where π̃t is defined as

π̃t ≡
α
κ

xt +
1

1−λL
πt︸ ︷︷ ︸

WAIT

+(1−λ )gρ2Ω
1

1−ζ1L
IEt

1

1−ζ−1
2 L−1

1
1−λL

πt+1︸ ︷︷ ︸
Pre-emption

Then the optimal target criterion under imperfect central bank information is

π̃t|t = π∗
t , where π∗

t ≡ 1

1+(1−λ )gρ2Θ
P(L)∆t−1 and ∆t ≡ π∗

t − π̃t (28)

with Θ ≡ (1−β )β
1−βρ +Ω 1

β (1−βρ)
κ
σ −Ωλ

β
1

1−ζ−1
2 λ

κ
σ and

P(L) ≡ λ
β

κ
σ

1
1−λL

+
λ
β
(1−β )+1︸ ︷︷ ︸

Make-up policy

+

(1−λ )gρ2Ω
κ
σ

(
λ
β

1

1−ζ−1
2 λ

(
λ

1−λL
+ζ1

)
− ζ1

β (1−βρ)

)
1

1−ζ1L︸ ︷︷ ︸
Interaction o f pre-emption and make-up policy

(29)
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The optimal target criterion under imperfect information (28) generalises the unconstrained target
criterion (17). It differs from (17) in two ways: (i) the central bank does its best to implement it given
its information set ICB

t (i.e. it can only control π̃t|t , not π̃t), and (ii) its target for π̃t|t is not always
zero, but adjusts based on past errors in implementing optimal policy – ∆t – due to the information
constraint.

The optimal target criterion though remains a flexible average inflation target. The difference here is
in the definition of flexibility. The central bank still retains the same WAIT and pre-emption incentives
but now must commit to make up for any errors in implementing policy that arise from the information
constraint.

Make-up policy works through three channels represented by the three terms in the first line of
Equation (29). The first term reflects the effect on inflation expectations of a commitment to make
up for an error. Rational forward-looking agents respond today to the expected make-up policy they
anticipate will occur, which dampens the impact of the shock. The second term represents the effect
of this commitment on output gap expectations, which affect the current output gap through the
permanent income hypothesis with (1−β ) representing the marginal propensity to consume from
a change in current period income. The final term represents the effect of commitment on nominal
interest rate expectations. Committing to offset misses shifts the expected nominal yield curve and
further ameliorates the effect of any unexpected shock. The first two terms are both multiplied by
λ , which signifies their dependence on forward-looking expectations. By contrast, the third term is
multiplied by one since all agents incorporate the optimal path of interest rates into their beliefs.

The second line of Equation (29) reflects the change in the cost and benefit to make-up policy when
there are learning expectations. Policy actions, like shocks, are instantiated into learning agents’
beliefs when output and inflation respond and must be accounted for when implementing policy. To
aid intuition, consider the case when prices are fixed, κ = 0. The optimal target criterion reduces to

xt|t = x∗t

where x∗t is

x∗t ≡
1

1+(1−λ )gρ2 (1−β )β
1−βρ

(
λ
β
(1−β )+1

)
∆t−1

with ∆t ≡ x∗t − xt . The central bank should set its best estimate of the output gap xt|t equal to the
moving target x∗t , which is determined by the previous period’s miss, ∆t−1. The extent to which
the central bank should commit to offset past misses depends on the strength of: (i) the forward-
looking income expectations channel, given by λ

β (1−β ); (ii) the nominal yield curve channel, given
by the 1 in the parentheses; and (iii) the effect of learners’ drifting income expectations, given by
(1−λ )gρ2 (1−β )β

1−βρ . This last term lowers the response to a given miss as g rises or λ falls. Make-up
policy itself is a source of variation in this economy when agents are learning, which generates further
drifts in beliefs that must be pre-empted.12

12 Eusepi, Giannoni and Preston (2024) explore this feature of learning models in depth, focusing on the transmission of
short-run interest rate to long-run interest rate expectations, which is absent in our model. In Appendix B.1, we discuss
how our results might be affected if some agents form policy rate expectations by learning, instead of rationally.
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4.1.1 Mechanics of optimal policy: imperfect information

Figure 4 shows how optimal policy compares with IT in response to an unexpected cost-push shock
under the same calibration explored in Figure 1. In contrast to the unconstrained case, the optimal
policy is now more aggressive than IT policy. IT policy ‘lets bygones be bygones’ and does not
respond to the failure to recognise the shock on impact, whereas optimal policy seeks to ‘make up’
for this miss. The anticipation of the aggressive policy acts as an automatic stabiliser when the shock
occurs. Forward-looking agents understand the aggressive response is coming and that inflation
will be lower in the future, which lowers inflation today. When λ is high, optimal policy is only a
little different from the unconstrained case. This is because even under perfect information, optimal
policy required only a small contemporaneous response, with a larger and persistent subsequent
response. The information friction is therefore not too costly and only a small increase in make-up
policy is required. When λ is low, the information friction makes more of a difference. With perfect
information, the required contemporaneous response was large and the role of make-up policy was
smaller. Imperfect information prevents the contemporaneous response, but introduces a substantial
role for make-up policy because policymakers now want to influence interest rate expectations, which
are forward looking even when λ = 0. The optimal policy prescription therefore ends up being similar
across λ in the imperfect information case.

Figure 4: Imperfect Information IT versus Optimal Policy – Cost-push Shock
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Notes: Response to a 1 per cent cost-push shock, which occurs in period 1. Parameter values are ρ = 0.95, g = 0.08,
β = 0.99, σ = 1, κ = 0.1, α = κ/7.87.
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Figure 5 shows the dynamics of optimal policy versus IT for an unexpected demand shock (i.e. an
increase in the natural rate rn

t ). In the full information case, this shock is perfectly offset and has no
effect on the output gap or inflation. Information frictions, however, change the prediction. Demand
shocks generate inflation. As in the cost-push shock case, optimal policy is now more aggressive
than required under IT, which causes inflation to undershoot following the shock. Once again, under
imperfect information, optimal policy is similar for both high and low λ cases.

Figure 5: Imperfect Information IT versus Optimal Policy – Natural Rate Shock
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Notes: Response to a 1 per cent natural interest rate shock, which occurs in period 1. Parameter values are ρ = 0.95,
g = 0.08, β = 0.99, σ = 1, κ = 0.1, α = κ/7.87.

4.1.2 Optimal average inflation target: imperfect information

Like the unconstrained case, a FAIT policy is robust because we can capture most of WAIT, pre-
emption and the additional make-up policy using only a weighted average of past outcomes. In
contrast to the unconstrained case, though, optimal policy requires tracking a weighted average over
both inflation and the output gap.

To illustrate, we substitute ∆t−1 ≡ π∗
t−1− π̃t−1 into Equation (29), rearrange, and then substitute the

result into Equation (28) to arrive at

IEt|t
1

1− 1
1+(1−λ )gρ2Θ

P(L)L
π̃t = 0 (30)



20

where IEt|t denotes the expectation conditional on ICB
t . This formulation makes clear that the ‘moving

target’ described in Equations (28) and (29) is equivalent to trying to set some weighted average
of current and past π̃t equal to zero. Since the central bank cannot implement the full information
optimal target criterion π̃t = 0 in every period, it instead tries to implement it on average over time.

As in the full information case, we can combine the optimal policy conditions with the equilibrium
conditions to evaluate the expectation terms in Equation (30) (which are inside π̃t). This gives us a
description of optimal policy just in terms of past inflation and output gaps, akin to Equation (20).
Assuming again that the cost-push is a first-order autoregressive process,13 Appendix A.2 shows
that, following an analogous approach to the derivation of Equation (20), we can write optimal policy
under imperfect information in equilibrium as

IEt|t (Qx(L)xt +Qπ(L)πt +Qu(L)ut) = 0 (31)

where Qx(L), Qπ(L) and Qu(L) are power series in L and are defined in Appendix A.2. The coefficients
in the power series Qx and Qπ give the precise weight that the central bank places on current and
past values of the output gap and inflation when implementing optimal policy.

Figure 6 plots these weights for different values of λ and g. The top row mirrors the left panel of
Figure 3. It shows the case where there is no updating of learning beliefs (g = 0), which reduces the
model to one featuring myopia as in Gabaix (2020). Optimal policy requires increasing weights in this
case. This reflects the requirement of additional make-up policy. The bottom row of the figure shows
the g ≥ 0 case. Additional make-up policy is required but it is moderated by the need to adjust for
drifts in expectations. Importantly, when g is high, the optimal weights eventually decline in a similar
way to the unconstrained case. It is this declining feature of the weights that makes FAIT a robust
framework across a wide range of scenarios. We show in Section 5 that tracking weighted averages
of inflation and output with declining weights captures most of the benefits of optimal policy.

13 Only the unexpected component of the IS curve shock is relevant to optimal policy. The central bank can fully offset any
expected component, just as it does in the full information case.
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Figure 6: Optimal Weights – Imperfect Information
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Notes: Optimal weights on past inflation and output gap under imperfect information found in Qπ (L) and Qx(L) in (31).
Parameter values are β = 0.99, σ = 1, κ = 0.1, α = κ/7.87.

4.2 Optimal policy with the zero lower bound

Optimal policy with the zero lower bound is very similar to optimal policy under imperfect information.
Both constraints mean that the central bank sometimes cannot set the output gap it wants, in which
case it cannot implement the full information optimal target criterion. As with imperfect information,
the central bank should respond to this ZLB constraint by using commitment to influence the forward-
looking expectations that enter the IS equation – that is, households’ expectations over future output,
inflation, and nominal interest rates. The key difference from the imperfect information case is that
losses caused by a binding ZLB are not zero in expectation, even in the presence of mean zero
shocks drawn from a symmetric distribution. Therefore, the pre-emptive channel of policy has a more
significant role. The central bank should seek to pre-emptively raise learners’ output and inflation
expectations if it expects the ZLB to bind in the future. This is the use it or lose it character of optimal
policy when confronted with the ZLB. It is optimal to move expectations pre-emptively before the
constraint binds.

To derive optimal policy with the ZLB, we replace the information constraint (21) with the lower bound
constraint

it ≥ ī (32)

The optimal policy problem is then to choose the sequence {πt ,xt ,ω
π
t ,ω

x
t , it}

∞
t=0 that maximises

welfare (9) subject to the constraints (10) to (13) imposed by private-sector equilibrium behaviour
and the lower bound constraint (32).
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The first-order conditions are the same as in the imperfect information case, except that Equation (23)
is replaced with the complementary slackness condition

µ i
t ≥ 0, µ i

t (it − ī) = 0 (33)

Just as µ i
t previously represented the extent to which imperfect information constrained the central

bank, it now represents the losses caused by the ZLB. It is positive when the ZLB is binding and zero
otherwise.

Condition (25) is the same as before, but the expressions for µωπ
t and µωx

t in conditions (26) and
(27) take a more general form, because IEt µ

i
T is no longer necessarily equal to zero for all T ≥ t +1:

µωπ
t =−(1−λ )ρΩ 1−λL

1−ζ1L IEt
1

1−ζ−1
2 L−1

1
1−λLπt+1

+(1−λ )ρΩ 1−λL
1−ζ1L IEt

1
1−ζ−1

2 L−1

(
λ
β

L
1−λL +

1
β (1−βρ)(1−L)

)
µ i

t+1
(34)

µωx
t = (1−λ )

(1−β )ρβ
1−βρ

IEt
1−L

1−βρ(1−g)L−1 σ µ i
t+1 (35)

If IEt µ
i
T = 0 for all T ≥ t +1, then conditions (34) and (35) collapse to conditions (26) and (27). The

second line of (34) indicates how the central bank can use learners’ inflation expectations to lower
the real interest rate when the ZLB binds. The first term in the parentheses represents the effect of
raising learners’ inflation expectations on the inflation expectations of the rational forward-looking
agents. This term, therefore, has both pre-emptive and history-dependent aspects. The second term
in the parentheses represents the effect of shifting learners’ inflation expectations on future real
interest rates. Similarly, (35) represents the effect of shifting learners’ output expectations for future
output gaps.

Conditions (25), (33), (34) and (35) define optimal policy with the ZLB constraint.

Result 5 (Optimal target criterion with ZLB). Recall that the optimal target criterion under full
information and without the ZLB is π̃t = 0, where we defined

π̃t ≡
α
κ

xt +
1

1−λL
πt︸ ︷︷ ︸

WAIT

+(1−λ )gρ2Ω
1

1−ζ1L
IEt

1

1−ζ−1
2 L−1

1
1−λL

πt+1︸ ︷︷ ︸
Pre-emption

Then the optimal target criterion when the ZLB can bind is

π̃t = π∗
t (36)

where π∗
t ≡ 1

1+(1−λ )gρ2Θ

(
P(L)∆t−1 + IEtP1(L

−1)∆t+1 +P2(L)IEt−1P3(L
−1)∆t

)
and ∆ ≡ π∗

t − π̃t

where

P(L) ≡ λ
β

κ
σ

1
1−λL

+
λ
β
(1−β )+1︸ ︷︷ ︸

Make-up policy

+

(1−λ )gρ2Ω
κ
σ

(
λ
β

1

1−ζ−1
2 λ

(
λ

1−λL
+ζ1

)
− ζ1

β (1−βρ)

)
1

1−ζ1L︸ ︷︷ ︸
Interaction o f pre-emption and make-up policy
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is the same as Equation (29) and

P1(L
−1) = (1−λ )gρ2Ω κ

σ

(
λ
β

ζ−1
2

1−ζ−1
2 λ

+
1−ζ−1

2
β (1−βρ)

)
IEt

1
1−ζ−1

2 L−1

+(1−λ )gρ2 (1−β )β
1−βρ

(1−βρ(1−g)) IEt
1

1−βρ(1−g)L−1︸ ︷︷ ︸
Insurance f or expected bind

(37)

P2(L) = ζ1
1

1−ζ1L
(38)

P3(L
−1) = (1−λ )gρ2Ω

κ
σ

(
λ
β

ζ−1
2

1−ζ−1
2 λ

+
1−ζ−1

2
β (1−βρ)

)
IEt

1

1−ζ−1
2 L−1︸ ︷︷ ︸

Insurance f or expected bind

(39)

Optimal policy commits to responding to past misses (see P(L)), exactly as in the information
constraint case, and it adjusts the target π∗

t in response to expected future target misses (P1(L
−1))

and past expectations of target misses (P2(L) and P3(L
−1)). The net effect is even more make-up

policy is promised.

The terms P1(L
−1) and P3(L

−1) capture the insurance nature of optimal policy when agents are
learning. Eusepi, Gibbs and Preston (2024) coin the term the insurance principle, which says that
when the duration of the ZLB is uncertain, and agents are learning, that larger front-loaded forward
guidance promises are optimal. These policies are too stimulatory when the shock is short-lived,
but highly effective when the shock is long-lived because of the positive contribution they make to
agents’ drifting beliefs. The expectations operator present in these two terms captures the idea that
policy must be set according to the expectation of how long the ZLB binds, which may not match the
ex post realised duration of the shock. The more learning that is present (lower λ ), and the faster
learning happens (higher g), the more the central bank should respond now to these expectations of
future binds of the ZLB.

To more clearly see how the terms in Result 5 relate to make-up and insurance policies, consider
again the case where prices are fixed, κ = 0. Optimal policy implies

xt = x∗t

where

x∗t ≡ 1

1+(1−λ )gρ2Θ

(
λ
β
(1−β )+1

)
∆t−1︸ ︷︷ ︸

Make-up policy

+
(1−λ )gρ2Θ

1+(1−λ )gρ2Θ
(1−βρ(1−g)) IEt

1

1−βρ(1−g)L−1 ∆t+1︸ ︷︷ ︸
Insurance principle

with ∆t ≡ x∗t −xt . The first line is identical to the target criterion in the imperfect information case with
fixed prices. The second line represents the additional requirement of optimal policy to lift agents’
expectations pre-emptively when the ZLB is expected to bind, or continue to bind. Policy should move
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in anticipation of a binding of the ZLB to raise expectations to pre-empt the losses that are expected
to accrue while the ZLB binds.

Figure 7 compares optimal policy to IT in the presence of the ZLB.14 First, note that even before
the shock hits, optimal policy maintains a small positive output gap and inflation rate (except when
g is very small). This is the pre-emptive component of optimal policy: given that the ZLB could bind
with some probability in any period, it is optimal to ensure that learners’ inflation and output gap
expectations are somewhat above target. For larger g, shocks have greater influence over learners’
expectations, and so it is optimal to ‘run the economy hotter’. Optimal policy also holds the policy
rate at the ZLB for longer than IT, generating a positive output gap and inflation overshoot. This is
the make-up component. As a result of these two components, the downturn when the shock hits is
much smaller, even though there is some welfare loss before and after the shock. Interestingly, even
though optimal policy involves a more expansionary stochastic steady state, the policy rate is higher,
because inflation expectations are higher.

Figure 7: Optimal Policy at the ZLB
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Notes: Response to a 1.5 per cent natural rate shock, which occurs in period 1 and has persistence 0.75. Parameter
values are λ = 0.25, ρ = 0.95, σ = 1, κ = 0.1, α = κ/7.87.

14 To solve the model with the ZLB, we use a policy function iteration method, drawing on code in Sijmen Duineveld’s
PROMES toolbox (Duineveld 2021).
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Figure 8 shows how the pre-emptively higher stochastic steady-state inflation target varies with λ ,
g, and the mean neutral rate, rn.15 As expected, the inflation target is higher when g is higher, which
requires more pre-emptive policy, and when rn is lower, which increases the likelihood of hitting
the ZLB. When g is high, the inflation target is highest for intermediate values of λ , reflecting the
amplification that can occur between forward-looking and backward-looking expectations through
optimal pre-emptive policy.

Figure 8: Stochastic Steady State for Inflation with the ZLB
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t is 4 percentage points. Parameter
values are ρ = 0.95, σ = 1, κ = 0.1, α = κ/7.87.

5. Comparing Target Criteria

The optimal target criteria we have derived require complex considerations on the part of the central
bank where policy must respond to competing objectives in precise ways. The target criteria also
requires a knowledge of the underlying expectation formation process in order to implement. In this
section, we ask how robust are the policy lessons we draw from the optimal criteria. In other words,
how flexible can you be as a flexible average inflation targeter?

To answer this questions, we first look at how closely simple weighted-average inflation targeting
schemes can perform relative to the optimal target criteria, and how do these perform against known
target criteria like inflation or price-level targeting. Second, we study how these simplified optimal
target criteria perform when a central bank does not know how expectations are formed and must

15 Here, when we say ‘steady-state inflation target’, we are referring to the stochastic steady state, meaning the value that
inflation converges to in the absence of shocks, but where agents still expect that shocks could occur in the future.
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calibrate their target criterion to maximise the average welfare for a range of different belief formation
processes.

We allow for cost-push shocks and imperfect central bank information in this analysis so the policy
cannot perfectly offset all demand and productivity shocks. We consider this to be the most general
and realistic case.16 Appendices D.1 and D.2 provide results for the unconstrained case, where cost-
push shocks are the only source of losses.17

5.1 Approximating optimal policy with simple target criteria

Table 2 presents a list of simple target criteria that capture key features of the optimal target criteria
in the unconstrained and constrained cases, as well as other target criteria commonly studied in
the literature. The list includes inflation targeting, price-level targeting, and simple average inflation
targeting rules (‘k-yr AIT’). Informed by the analytical results in the previous sections, we also include
rules that incorporate some combination of an IT or weighted AIT component (‘WAIT’); a weighted
average output-gap targeting component (‘WAXT’); and a preemptive component that is a forward-
looking weighted average of inflation forecasts (‘preemptive’).

Table 2: Simple Target Criteria
Rule Form Parameters
IT xt =−ψπt ψ
PLT xt =−ψ pt ψ
k-yr AIT xt =−ψ

∑4k−1
j=0 πt− j ψ

WAIT xt =−ψ 1
1−γL πt ψ,γ

WAIT + WAXT 1
1−γxL xt =−ψ 1

1−γL πt ψ,γ,γx

IT + pre-emptive xt =−ψπt −ψ f IEt
1

1−γ f L−1 πt+1 ψ,ψ f ,γ f

WAIT + pre-emptive xt =−ψ 1
1−γL πt −ψ f IEt

1
1−γ f L−1 πt+1 ψ,γ,ψ f ,γ f

WAIT + WAXT + pre-emptive 1
1−γxL xt =−ψ 1

1−γL πt −ψ f IEt
1

1−γ f L−1 πt+1 ψ,γ,γx,ψ f ,γ f

Note: The parameters are optimised to minimise welfare loss when implementing each rule.

For each of the target criteria listed in Table 2, we find the optimal parameters that minimise welfare
loss and compare it to the loss achieved under the fully optimal target criteria. For the calibration, we
set σ = 1 and κ = 0.1 (equivalent to a Calvo stickiness probability of around 0.7). For the expectation
formation parameters, we use a baseline of λ = 0.5, g = 0.08 and ρ = 0.95. Finally, we set the
persistence of the shocks to ρu = ρrn = 0.5 with the standard deviation of the neutral rate shock at
ten times the standard deviation of the cost-push shock (similar to Giannoni (2014)). For simplicity,
we let β → 1, so that the loss function is L = Var(πt)+αVar(xt), with α = κ/7.87.

16 Alternatively, we could also allow for an occasionally-binding ZLB. However, as we show in Result 5, imperfect central bank
information captures key features of the ZLB constraint, in that both prevent the central bank from perfectly controlling
the output gap. The main difference is that target misses due to the ZLB are non-zero in expectation, so allowing the
ZLB when optimising the simple target criteria outlined below would likely result in a stronger pre-emptive response to
expected future outcomes.

17 The main difference is that the optimal degree of make-up policy is lower when the central bank has perfect control of
the output gap, as the analytical results in previous sections suggest. Compared to the imperfect information case, the
optimal weight on lagged inflation and output gap outcomes is smaller, PLT underperforms IT, and IT in general is closer
to optimal policy. That said, Appendix C.2 shows that allowing for an infinite-horizon Phillips curve somewhat increases
the optimal degree of make-up policy in the unconstrained case, making it more like the imperfect information case.
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Table 3 presents the results. The gains from optimal policy relative to IT are large, at 36.5 per cent of
the loss under IT. These gains can be almost entirely achieved by following a rule that responds to a
weighted average of both past inflation and past output gaps (the ‘WAIT + WAXT’ rule). Significant
gains come from making up for past output gaps, because imperfect information prevents the central
bank from perfectly controlling the output gap. Recall that lagged output gap terms enter the optimal
target criterion under imperfect information, Equation (28) (as with the ZLB), unlike the unconstrained
case, Equation (17). The decay parameters in the WAIT and WAXT are 0.94 and 0.89, so substantial
weight is placed on inflation and output outcomes in the past. The PLT rule outperforms IT. Simple
AIT rules with short windows perform worse than the weighted average rules.

Table 3: Performance of Simple Target Criteria – Imperfect Information Case
Rule Loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 24.6 27.4
IT 0 20.9
2-yr AIT –4.5 27.9
IT + pre-emptive –14.8 0.0 1.60 1.75
1-yr AIT –15.7 15.6
PLT –23.8 20.3 1
WAIT –25.1 17.4 0.75
WAIT + pre-emptive –25.1 17.4 0.75 0.00 undef
WAIT + WAXT –35.4 12.3 0.94 0.89
WAIT + WAXT + pre-emptive –35.4 12.3 0.94 0.89 0.00 undef
Optimal –36.5
Notes: Welfare losses are normalised relative to the welfare under IT. The parameters for each rule are optimised to minimise welfare.

The optimal value of a parameter is undefined (labelled undef) if the parameter has no effect on loss at the optimum.

The results support the idea that the average in FAIT should be a weighted average. Importantly,
though, the simple target criteria all require a strong response to current inflation, which is seen by
the optimised values of ψ and γ. Simple AIT rules require large ψ values as well to compensate for
the 1/k weight applied to current inflation. However, it is not enough to offset the wrong type of
average.

5.2 Robust optimal policy under parameter uncertainty

The previous results show that simpler targeting rules can approximate the optimal target criteria.
However, the simple targeting rules require the policymaker to know λ , g and ρ. Here we study
what happens when the policymaker does not know these values and instead must choose a target
criterion that is optimised to maximise welfare on average when λ , g and ρ can take on any value
in economically meaningful ranges, which we approximate with a grid. In particular, we consider the
values: λ ∈ {0,0.25,0.5,0.75,1}, g ∈ {0,0.01,0.08,0.25,1} and ρ ∈ {0.95,0.99}.18

Table 4 shows the average welfare and the optimised parameter values for each target criterion. In
addition, we show the average loss that would be achieved if the optimal criterion was implemented
at each point of the grid, which represent the minimum loss achievable. WAIT rules perform best,
with decay parameters of around 0.75 to 0.87. Making up for past output gaps as well via a WAXT

18We set the other parameters at the baseline calibration described in the previous section.
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component substantially lowers the loss. The PLT rule significantly outperforms IT. The 5-yr and 2-yr
AIT rules always perform poorly.

Table 4: Policy under Parameter Uncertainty – Imperfect Information Case
Rule Average loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 118.0 1.4
2-yr AIT 19.8 9.2
IT 0 20.9
IT + pre-emptive –1.3 14.9 13.0 1.52
1-yr AIT –16.6 20.7
PLT –22.4 16.8 1
WAIT –24.0 15.1 0.75
WAIT + pre-emptive –24.0 15.1 0.75 0.0 undef
WAIT + WAXT –31.0 14.5 0.87 0.69
WAIT + WAXT + pre-emptive –31.1 13.3 0.87 0.66 6.8 0.00
Optimal –35.7
Notes: The parameters reported are set to maximise the average loss across all points in the grid. Average welfare losses are normalised

relative to the welfare under IT. The optimal value of a parameter is undefined (labelled undef) if the parameter has no effect
on loss at the optimum.

To show what lies behind the average losses in the table, Figure 9 plots the loss under a selection
of target criteria from Table 4 for different values of the expectation formation parameters λ and
g. The parameters in the policy rules are held fixed at the robustly optimal values set to minimise
average loss and not optimised for each λ and g shown in the figure. The dashed line shows the
optimal target criteria optimised at each point to show how close the simple rules with the average
coefficients can come to the fully optimal policy.

The results in Figure 9 reflect the nesting of different expectations assumptions within our approach.
The IT rule and PLT rules perform similarly when λ is low (when make-up commitments have little
effect on inflation or output gap expectations) or g is high (when the sensitivity of learners’ beliefs
increases the cost of make-up commitments relative to their benefit).19 When λ is high, make-up
commitments are more powerful and the IT rule performs poorly.

In contrast, the WAIT rules generally perform well for all λ and g, and including a WAXT component
consistently lowers the loss for all parameters (except for g = 1, when it has little effect). It is
important to reiterate that this is the case even though we have fixed the coefficients of the simple
WAIT and WAXT rules to their robustly optimal values in Table 4 so it is a fair comparison with the
IT and PLT rules. Only in the optimal policy benchmark do we allow the policy rule parameters to
change as we vary λ and g. The performance of the fixed-coefficient simple WAIT and WAXT rules is
still remarkably close to the optimal benchmark, which illustrates the robustness of this form of FAIT.

19 PLT still slightly outperforms IT even when λ = 0 because nominal interest rate expectations still respond to make-up
commitments. If the central bank has perfect control of the output gap, then IT outperforms PLT significantly when
λ = 0 (see Appendix D.2).
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Figure 9: Loss under Different Parameter Values – Imperfect Information Case
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5.3 Discussion

The reason that simple FAIT target criteria are robust is that once λ and g are in the interior of their
theoretical ranges, and expectations are both backward looking and forward looking, the features of
optimal policy are the same. Optimal policy requires a weighted-average inflation target and some
flexible component that captures pre-emption and make up. Pre-emption appears to be satisfied in
most cases simply by placing high weight on current inflation and output realisations as found in
the optimised ψ and γ coefficients in the WAIT + WAXT rules, while additional make-up policy is
captured by including the WAXT term.20

6. Conclusion

It is widely recognised that rational expectations is a strong assumption and many researchers and
policymakers have worried that policy recommendations that rely on it may not be robust. A large
literature has shown that this concern is warranted in a variety of settings. We show that, in a
framework encompassing a broad set of theories of expectation formation, flexible average inflation

20 If we allowed for the ZLB, including an explicit pre-emption term would likely offer a greater improvement in welfare (at
least if the steady-state neutral rate is sufficiently low). Increasing the persistence of the cost-push shocks might have
a similar effect.
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targeting is a robust policy strategy. Whether the central bank is unconstrained, faces information
constraints or the ZLB, it is optimal to target a weighted average of inflation.

In addition, the optimal target criteria we derive give clear guidance on when policy should be flexible
and deviate from the policy implied by the weighted average of inflation alone. If expectations drift in
ways that are inconsistent with policymakers’ objectives, then pre-emptive actions should be taken,
with more agressive policy now to re-anchor beliefs. If targets are missed today, then policy should
do more to make up for the misses in the future. If targets are expected to be missed in the future
because of the constraint of the ZLB, then policy should do more today to insure itself against the
possibility of a prolonged period of constrained actions. This guidance summarises what the flexible
in FAIT should mean.



31

Appendix A: Derivations

A.1 Unconstrained optimal policy

The unconstrained optimal policy problem is to maximise (9) subject to (10) to (13). The first-order
conditions for this problem are

πt +µπ
t −λ µπ

t−1 −
λ

βσ

t∑
j=0

µx
t−1− j −ρgµωπ

t = 0 (A1)

αxt −κµπ
t +µx

t −λ
(

1
β
−1
) t∑

j=0

µx
t−1− j −ρgµωx

t = 0 (A2)

−(1−λ )β 2ρIEt µ
π
t+1 − (1−λ )

βρ
1−βρ

1
σ

IEt µ
x
t+1 +µωπ

t −βρ(1−g)IEt µ
ωπ
t+1 = 0 (A3)

−(1−λ )
(1−β )βρ

1−βρ
IEt µ

x
t+1 +µωx

t −βρ(1−g)IEt µ
ωx
t+1 = 0 (A4)

1
σ

t∑
j=0

µx
t− j = 0 (A5)

From (A5), we have µx
t = 0. This is Result 1. When policy is unconstrained, the IS curve is not a

binding constraint. The central bank can generate whatever output gap it wants.

Substituting µx
t = 0 into (A4) gives µωx

t = 0. Learners’ output gap expectations enter only the IS
curve. Therefore, when policy is unconstrained, there is no reason for the central bank to try to
influence learners’ output gap expectations.21

Combining (A1) and (A2) to eliminate µπ
t gives Equation (14) in the main text. Similarly, using (A1) to

eliminate µπ
t in (A3) gives Equation (15). The remainder of the derivation for unconstrained optimal

target criterion (17) is in the main text.

A.1.1 Derivation of Equation (19)

First, we rewrite µωπ
t in terms of expected output gaps by substituting (14) into the second right-hand

side term in (15) and iterating forward to get

µωπ
t = (1−λ )ρβ 2IEt

1

1−ρβ (1−g)L−1
α
κ

xt+1

Then, inverting the optimal target criterion (17) gives

πt =−α
κ

xt +λ
α
κ

xt−1 +(1−λ )gρ2β 2IEt
1

1−ρβ (1−g)L−1
α
κ

xt+1 (A6)

The equilibrium system of (10), (12) and (A6) has the following minimum state variable solution

µωπ
t = (1−λ )

(
axxt −aωωπ

t −auut
)
= (1−λ )

(
axxt −aωρgπt −aωρ(1−g)ωπ

t−1 −auut
)

for some constants ax, aω and au, where the second equality uses the law of motion of ωπ
t .

21 This conclusion would not hold if we had an infinite-horizon Phillips curve, as in Eusepi et al (2018), because output gap
expectations would then enter the Phillips curve.
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A.2 Constrained optimal policy

Suppose we add to (10) to (13) some constraint on the policy rate. This could be an information
constraint (21), or a ZLB constraint (32). For this optimal policy problem, the first four first-order
conditions, (A1) to (A4), remain the same. But instead of (A5), we have (22), reproduced here:

1
σ

t∑
j=0

µx
t− j −µ i

t = 0 (22)

where µ i
t is the Lagrange multiplier on the policy rate constraint.22

Using (A1) to eliminate µπ
t from (A2) to (A4) and then substituting in σ(1−L)µ i

t = µx
t from (22)

gives (25), (34) and (35), which we reproduce here:

α
κ

xt +
σ
κ

µ i
t =− 1

1−λL

(
πt −

λ
β

κ
σ

σ
κ

µ i
t−1 −ρgµωπ

t

)
+

(
λ
(

1
β
−1
)
+1
)

σ
κ

µ i
t−1 +

ρg
κ

µωx
t (25)

µωπ
t =−(1−λ )ρΩ 1−λL

1−ζ1L IEt
1

1−ζ2L−1
1

1−λL

(
πt+1 − λ

β
κ
σ

σ
κ µ i

t

)
+(1−λ ) ρΩ

β (1−βρ)
κ
σ

1−λL
1−ζ1L IEt

1−L
1−ζ2L−1

σ
κ µ i

t+1
(34)

µωx
t = (1−λ )

(1−β )βρ
1−βρ

IEt
1−L

1−βρ(1−g)L−1 σ µ i
t+1 (35)

Now substitute (34) and (35) into (25) and collect all the non-µ i
t terms in π̃t , which is defined in

Result 4 in the main text. This gives

π̃t +
σ
κ µ i

t = λ
β

κ
σ

1
1−λL

σ
κ µ i

t−1

+(1−λ )gρ2Ωλ
β

κ
σ

1
1−ζ1L IEt

1
1−ζ2L−1

1
1−λL

σ
κ µ i

t

+(1−λ )gρ2Ω 1
β (1−βρ)

κ
σ

1
1−ζ1L IEt

1−L
1−ζ2L−1

σ
κ µ i

t+1

+
(

λ
(

1
β −1

)
+1
)

σ
κ µ i

t−1

+(1−λ )gρ2 (1−β )β
1−βρ IEt

1−L
1−βρ(1−g)L−1

σ
κ µ i

t+1

=
{

λ
β

κ
σ

1
1−λL +λ

(
1
β −1

)
+1
}

σ
κ µ i

t−1

+(1−λ )gρ2
{

Ωλ
β

κ
σ

1
1−ζ2λ

1
1−ζ1L

1
1−λL −Ω 1

β (1−βρ)
κ
σ

1
1−ζ1L −

(1−β )β
1−βρ

}
σ
κ µ i

t

+(1−λ )gρ2 (1−β )β
1−βρ (1−βρ(1−g)) IEt

1
1−βρ(1−g)L−1

σ
κ µ i

t+1

+(1−λ )gρ2Ω κ
σ

{
λ
β

1
1−ζ2λ ζ2 +

1
β (1−βρ)(1−ζ2)

}
IEt

1
1−ζ2L−1

σ
κ µ i

t+1

+(1−λ )gρ2Ω κ
σ

{
λ
β

1
1−ζ2λ ζ2 +

1
β (1−βρ)(1−ζ2)

}
ζ1

1
1−ζ1L IEt−1

1
1−ζ2L−1

σ
κ µ i

t

=−(1−λ )gρ2Θσ
κ µ i

t +P(L)σ
κ µ i

t−1 + IEtP1(L
−1)σ

κ µ i
t+1 +P2(L)IEt−1P3(L

−1)σ
κ µ i

t

22 A similar first-order condition would apply if, instead of a constraint on the policy rate, the loss function contained a policy
rate stability or smoothing term. Then µ i

t would be replaced with the derivative of the (intertemporal) loss function with
respect to it . The structure of the optimal target criterion is therefore identical in all these cases up to the definition of
µ i

t .
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where Θ and P(L) are defined in Result 4 and P1(L
−1), P2(L) and P3(L

−1) are defined in Result 5.
Finally, define

π∗
t ≡ 1

1+(1−λ )gρ2Θ
σ
κ

(
P(L)µ i

t−1 + IEtP1(L
−1)µ i

t+1 +P2(L)IEt−1P3(L
−1)µ i

t

)
∆t ≡ π∗

t − π̃t =
(

1+(1−λ )gρ2Θ
) σ

κ
µ i

t

So we have

π̃t +∆t = π∗
t ≡ 1

1+(1−λ )gρ2Θ

(
P(L)∆t−1 + IEtP1(L

−1)∆t+1 +P2(L)IEt−1P3(L
−1)

σ
κ

∆t

)
(A7)

To get the optimal target criterion under imperfect information, Result 4, take the expectation of
(A7) with respect to the central bank’s information set. Since ∆t is just a multiple of µ i

t , (23) implies
∆t|t = 0 and IEt∆t+k = 0 for any k ≥ 1.

To get the optimal target criterion with the ZLB, Result 5, just recognise that ∆t is non-zero if and
only if the ZLB is binding.

A.2.1 Derivation of Equation (31)

Start the optimal policy conditions (25), (26) and (27). Together with the Phillips curve (10) and the
updating rule for learners’ inflation expectations (12), these five equations determine the optimal
equilibrium paths of {πt ,xt ,ω

π
t ,µ

ωπ
t ,µωx

t } in terms of the paths of µ i
t and the cost-push shock ut .

As in the derivation of Equation (19), we can rewrite µωπ
t in (26) in terms of expected output gaps

instead of expected inflation:

µωπ
t = (1−λ )ρβ 2IEt

1
1−ρβ (1−g)L−1

α
κ xt+1

−(1−λ )ρβ 2
(

λ
β (1−β )+1+ 1

β (1−βρ)
κ
σ

)
σ
κ µ i

t

(A8)

Then combining (27) and (A8) and using the minimum state variable solution to evaluate expectations
terms, we can write

µωπ
t +(1−λL) 1

κ µωx
t = (1−λ )ρβ 2IEt

1
1−ρβ (1−g)L−1

α
κ xt+1

−(1−λ )ρβ 2
(

λ
β (1−β )+1+ 1

β (1−βρ)
κ
σ + 1−β

β (1−βρ)

)
σ
κ µ i

t

+λ (1−λ )ρβ 2 1−β
β (1−βρ)

σ
κ µ i

t−1

= (1−λ )
(

axxt −aωρgπt −aωρ(1−g)ωπ
t−1 −auut −aµ,1µ i

t −aµ,2µ i
t−1

)
where ax, aω and au are the same constants as in (18), and aµ,1 and aµ,2 are new constants.
Combining with the updating rule for learners’ inflation expectations and using (21) gives the following
description of optimal policy

IEt|t
1

1− ρ0−ρ1L
1−γL L

(
α
κ

xt +ϕ
(

ψ
1− γL

+
1−ψ

1−ρ(1−g)L

)
πt +ϕνu

1
1− γL

ut

)
= 0

Or, simply IEt|t (Qx(L)xt +Qπ(L)πt +Qu(L)ut) = 0, where Qx(L), Qπ(L) and Qu(L) are power series
in L. The new parameters are

ρ0 ≡
λ + λ

β
κ
σ + λ

β (1−β )+1− (1−λ )ρgaµ,2
κ
σ

1+(1−λ )ρgaµ,1
κ
σ

− γ
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ρ1 ≡
λ
(

λ
β (1−β )+1

)
1+(1−λ )ρgaµ,1

κ
σ

The first and third power series, Qx(L) and Qu(L), are two different weighted averages of two
exponentially weighted averages of lags. The second power series, Qπ(L), is a weighted average of
these same two exponentially weighted averages of lags, plus a third exponentially weighted average
of lags, that is,

Qx(L)≡
1

1− ρ0−ρ1L
1−γL L

≡ ϕx

1−ξ1L
+

1−ϕx

1−ξ2L

Qπ(L)≡
1

1− ρ0−ρ1L
1−γL L

ϕ
(

ψ
1− γL

+
1−ψ

1−ρ(1−g)L

)
≡ ϕ

(
ϕπ1

1−ξ1L
+

ϕπ2
1−ξ2L

+
1−ϕπ1 −ϕπ2
1−ρ(1−g)L

)
Qu(L)≡

1

1− ρ0−ρ1L
1−γL L

ϕνu
1

1− γL
≡ ϕνu

(
ϕu

1−ξ1L
+

1−ϕu

1−ξ2L

)

where ξ1 and ξ2 are the roots of ξ 2 − (γ +ρ0)ξ +ρ1 and ϕπ1, ϕπ2, ϕx and ϕu are constants.
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Appendix B: Further Results

B.1 Optimal policy with non-rational interest rate expectations

B.1.1 When does learning about interest rates constrain policy?

To get a sense of how learning about it might alter our results, here we repeat the simple example in
Section 2 of Eusepi, Giannoni and Preston (2024) with our hybrid model for expectations. Consider
the model

πt = β Êtπt+1 +κxt

xt = Êt
1

1−βL−1

[
(1−β )xt+1 −

1
σ
(it −πt+1 − rn

t )

]
with rn

t iid. Suppose the central bank wants to implement πt = 0. Then the interest rate path follows

it = rn
t +

σβ
κ

Êtπt+1 + Êt
1

1−βL−1

[
σ(1−β )xt+1 − (β it+1 −πt+1 −β rn

t+1)
]

Now suppose that nominal interest rate expectations are partially rational and partially learned:

Êt iT = λ IEt iT +(1−λ )ρT−tω i
t−1

ω i
t = ρω i

t−1 +ρg(it −ω i
t−1)

For simplicity, assume all output gap and inflation expectations are fixed at steady state (the
mechanism we are interested in here is the feedback between interest rates and interest rate
expectations). Substituting in expectations, the interest rate path needed to implement πt is

it = rn
t −λβ IEt

1

1−βL−1 it+1 − (1−λ )
βρ

1−βρ
ω i

t−1

Substituting in ωt =
ρg

1−ρ(1−g)L it and rearranging gives

IEt

[
1+λβ

L−1

1−βL−1 +(1−λ )
βρ2g

1−βρ
L

1−ρ(1−g)L

]
it = rn

t (B1)

A bounded path for it and ω i
t exists only when23

g <
1+ρ

ρ
Λ where Λ =

1

1+
(1−λ ) βρ

1−βρ

1−λ β
1+β

(B2)

If we substitute in ρ = 1 and λ = 0, then this expression nests the equivalent condition (8) in Eusepi,
Giannoni and Preston (2024): g < 2(1−β ).

Effect of λ : relative to Eusepi, Giannoni and Preston (2024), introducing rational expectations (λ > 0)
affects this constraint in two opposite ways. The reduction in the share of learners means their

23 For all parameterisations, the roots of the characteristic polynomial for (B1) are real, and only one is greater than 1. A
bounded path for it and ω i

t exists if and only if the other root is greater than –1, which occurs when condition (B2) is
satisfied.
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interest rate expectations have less of an effect (this is the (1− λ ) term in Λ). But the rational
agents recognise that the central bank in the future has to offset the interest rate expectations of
learners, which changes their rate expectations, and the central bank now has to offset these rational
expectations (this is the λ term in Λ). But we can rewrite Λ as

Λ = (1−βρ)
(

1+
βρλ

1+β (1− (1+ρ)λ )

)
≥ 1−βρ

Therefore, the first effect outweighs the second, and so increasing the share of rational agents eases
the constraint.

Effect of ρ: if ρ < 1, then the constraint eases because (i) a given interest rate surprise does not
affect short-term beliefs as much or for as long, and (ii) a given short-term belief does not affect
long-term interest rate expectations as much.

B.1.2 Optimal policy with learning about interest rates

For a simple example, assume prices are fixed, and continue with the assumption that output gap
expectations are fixed. The optimal policy problem is

min
{xt ,it ,ω

i
t }

1
2

IEt
1

1−βL−1 x2
t

s.t. σxt =−it −λβ IEt
1

1−βL−1 it+1 − (1−λ )
βρ

1−βρ
ω i

t−1 + rn
t

ω i
t = ρgit +ρ(1−g)ω i

t−1

Let β → 1. Take the first-order conditions and eliminate multipliers to get the targeting rule

xt +λ
1

1−L
xt−1 +(1−λ )

ρ2g
1−ρ

IEt
1

1−ρ(1−g)L−1 xt+1 = 0 (B3)

The intuition in the main text around history dependence and pre-emption depending on the
proportion of rational agents and learners extends to the case of interest rate expectations.

The characteristic polynomial for (B3) is very closely related to the characteristic polynomial for (B1).
Condition (B2) turns out to be important for implementing this optimal target criterion:24

• If (B2) is satisfied, then the target criterion (B3) pins down a unique path for xt (which converges
to xt = 0). Substituting it into the IS curve gives a non-explosive path for it .

• If (B2) is not satisfied, then there are infinitely many paths for xt that satisfy the target criterion.
But, substituting into the IS curve, only one of those paths implies a bounded path for it and ω i

t .
Therefore, there still exists a unique bounded solution that is consistent with the optimal target
criterion.

If β < 1, then there is a set of parameterisations for which there is no bounded solution consistent
with the optimal target criterion. This occurs when β is sufficiently low that the optimal intertemporal

24 The roots of the characteristic polynomial for (B3) are the reciprocals of the roots of the characteristic polynomial for
(B1) (setting β = 1 in (B1)). They are real, and at least one lies inside the unit circle. The other root lies outside the unit
circle if and only if condition (B2) is satisfied.
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trade-off requires xt = 0, but g is sufficiently high than this cannot be achieved without an explosive
interest rate path. It occurs due to a tension between an impatient policymaker, who discounts the
future a lot, and significant lags in the transmission of policy, which mean that current policy has
significant future effects. If β is close to one, then the set of parameterisations for which this occurs
is small.

B.2 Optimal policy under discretion

What would our optimal targeting rules look like under discretion? This is a difficult question to
address analytically in our full model, but we can consider a two-period version of our model to get
some intuition:

π0 = βλ IE0π1 +κx0 +u0 (B4)
π1 = β (1−λ )gπ0 +κx1 +u1 (B5)

B.2.1 Optimal policy under commitment

We start by solving for optimal commitment policy in this two-period model so that we have a
benchmark to which we can compare optimal discretionary policy. The first-order conditions under
commitment are

π0 −µ0 +β 2(1−λ )gIE0µ1 = 0

π1 +λ µ0 −µ1 = 0

αx0 +κµ0 = 0

αx1 +κµ1 = 0

Eliminating the multipliers gives the optimal target criteria:

α
κ

x0 =−π0 +β 2(1−λ )gIE0π1

1−β 2(1−λ )gλ
(B6)

α
κ

x1 =−π1 −
λβ 2(1−λ )g

1−λβ 2(1−λ )g
IE0π1 −

1

1−λβ 2(1−λ )g
λπ0 (B7)

The heterogeneity of expectations and the interaction between rational and learners’ expectations is
important (i.e. the denominators increase to 1 if λ = 0 or λ = 1). Equation (B6) shows that when
λ ∈ (0,1), greater weight should be placed on current and expected future inflation, because the
costs of following through on make-up commitments next period are eased by influencing learners’
expectations this period. Equation (B7) shows that for λ ∈ (0,1), greater weight should also be placed
on past inflation and past expectations of inflation, because these make-up commitments ease the
costs of past pre-emptive policy.

B.2.2 Optimal policy under discretion

Working backwards, optimal policy under discretion in the second period is

α
κ

x1 =−π1 (B8)
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Then in the first period, the policymaker faces the constraints (B4), (B5) and (B8). The first-order
conditions are

π0 −µ0 +β 2(1−λ )gIE0µ1 = 0

π1 +λ µ0 −µ1 −µ2 = 0

αx0 +κµ0 = 0

αx1 +κµ1 −
α
κ

µ2 = 0

Eliminating the multipliers gives the optimal target criterion

α
κ

x0 =−π0 +β 2(1−λ )gIE0π1

1−β 2(1−λ )g λ

1+κ2
α

(B9)

Compare (B9) to the optimal commitment policy (B6). Optimal policy under discretion places less
weight on both inflation terms. Again heterogeneity is important: this difference is only because of
the interaction between rational agents and learners. If λ = 0 or λ = 1, then period 0 optimal policy
is identical under commitment and discretion.

The reason why discretion involves less response to inflation is because the future policymaker will
not be responding to past inflation. So there is no need to use learners’ expectations to ease the cost
of doing so. With both learning and rational expectations, there is still some reason to lift learners’
inflation expectations, because that will affect future inflation and thereby influence current rational
inflation expectations. But the future policymaker will attempt to offset this inflation rather than
accomodate it, so the effect is less powerful.
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Appendix C: Optimal Policy with Infinite-horizon Phillips Curve

C.1 Infinite-horizon Phillips curve

In the main text, we model firms’ pricing decisions by taking the standard New Keynesian Phillips curve
and substituting our alternative specification for aggregate inflation expectations into the expectation
term. This is consistent with the ‘Euler equation’ approach to adaptive learning, and also approximates
a range of other behavioural theories. But it is not consistent with the ‘anticipated utility’ approach
to adaptive learning. In this appendix, we provide optimal policy results using an ‘anticipated utility’
specification for the Phillips curve:

πt = ÎEt
1

1−θβL−1 (κxt +(1−θ)βπt+1) (C1)

Here the parameter θ is the Calvo probability, that is, the probability that a firm cannot change its price
in a given period. This Phillips curve follows from the firms’ optimal price setting under the standard
microfoundations of the New Keynesian model for any arbitrary expectations. Firms’ prices depend
on their expectations over the entire future sequence of inflation and output gaps, {πT ,xT}

∞
T=t . If we

assume rational expectations, then (C1) collapses to the standard one-step-ahead Phillips curve (2).

Using our specification for agents’ beliefs, (3) to (6), we have

πt = λ IEt
1

1−θβL−1 (κxt +(1−θ)βπt+1)+(1−λ )IEl
t

1
1−θβL−1 (κxt +(1−θ)βπt+1)

= λ IEt
1

1−θβL−1 (κxt +(1−θ)βπt+1)

+(1−λ )
(

κxt +
θβρ

1−θβρ κωx
t−1 +

(1−θ)βρ
1−θβρ ωπ

t−1

) (C2)

The optimal policy problem is the same as in the main text, but with a different Phillips curve, that
is, choose the sequence {πt ,xt ,ω

π
t ,ω

x
t , it}

∞
t=0 that maximises the welfare function (9) subject to the

Phillips curve (C2), the IS curve (11), the evolution of beliefs (12) and (13), and potentially some
information constraint or the ZLB.

The first-order conditions are

πt +µπ
t −λ (1−θ)

1
1−θL

µπ
t−1 −

λ
βσ

1
1−L

µx
t−1 −ρgµωπ

t = 0

αxt −κµπ
t −λθκ

1
1−θL

µπ
t−1 +µx

t −
λ (1−β )

β
1

1−L
µx

t−1 −ρgµωx
t = 0

−(1−λ )
(1−θ)β 2ρ

1−θβρ
IEt µ

π
t+1 − (1−λ )

βρ
σ(1−βρ)

IEt µ
x
t+1 +µωπ

t −βρ(1−g)IEt µ
ωπ
t+1 = 0

−(1−λ )
θβ 2ρ

1−θβρ
κIEt µ

π
t+1 − (1−λ )

(1−β )βρ
1−βρ

IEt µ
x
t+1 +µωx

t −βρ(1−g)IEt µ
ωx
t+1 = 0

plus an additional condition for µx
t that depends on whether there is an imperfect information or ZLB

constraint.

C.2 Unconstrained case

In the absence of imperfect central bank information or the ZLB, the additional first-order condition
is µx

t = 0. Eliminating µx
t and µπ

t gives
α
κ

xt =− 1−θ(1−λ )L
1− (λ +θ(1−λ ))L

πt +
1−θ(1−λ )L

1− (λ +θ(1−λ ))L
ρgµωπ

t +
ρg
κ

µωx

t (C3)



40

The multipliers µωπ
t and µωx

t – that is, the welfare effect of shifts in learners’ inflation and output
gap expectations – are given by

µωπ
t = βρ(1−g)IEt µ

ωπ
t+1 −β 2(1−λ ) (1−θ)ρ

1−βθρ IEt
1−θL

1−(λ+θ(1−λ ))L

(
πt+1 −ρgµωπ

t+1

)
µωx

t = κ θ
1−θ µωπ

t

Solving forward for µωπ
t then gives

1
1− (λ +θ(1−λ ))L

µωπ
t =−(1−λ )

(1−θ)ρ
1−βθρ

Ω′ 1
1−ζ ′

1L
IEt

1

1−ζ ′−1
2 L−1

1−θL
1− (λ +θ(1−λ ))L

πt+1

where Ω′ ≡ β 2ζ ′−1
2

βρ(1−g)+(1−λ )gβ 2 (1−θ)ρ2

1−βθρ

≡ β 2ζ ′
1

λ+θ(1−λ ) and ζ ′
1 and ζ ′

2 are the roots of the characteristic

polynomial (
βρ(1−g)+(1−λ )gβ 2 (1−θ)ρ2

1−βθρ

)
ζ 2

−
(

1+βρ(1−g)(λ +θ(1−λ ))+θ(1−λ )gβ 2 (1−θ)ρ2

1−βθρ

)
ζ

+(λ +θ(1−λ )) = 0

Using this solution to substitute for µωπ
t and µωx

t in (C3) gives the optimal target criterion:25

α
κ xt =− 1−θ(1−λ )L

1−(λ+θ(1−λ ))Lπt

−(1−λ )g ρ2

1−βθρ Ω′ 1−θL
1−ζ ′

1L
IEt

1
1−ζ ′−1

2 L−1
1−θL

1−(λ+θ(1−λ ))Lπt+1
(C4)

This optimal target criterion has the same structure as the analogous one in the main body, (17). It
includes a make-up component and a pre-emptive component, and the intuition behind it is the same.
The differences are a matter of degree. First, the optimal weights on past outcomes decay more slowly
in (C4). This is because the infinite-horizon Phillips curve implies that make-up commitments further
into the future have a stronger effect on current-period pricing decisions than is the case with the one-
step-ahead Phillips curve.26 Second, the optimal pre-emptive response to expected future inflation
is stronger. This is because policy-induced changes in learners’ beliefs now have a stronger effect
on future outcomes, because both their inflation and output gap expectations influence their pricing
decisions (with the one-step-ahead Phillips curve, only their inflation expectations were relevant).

Table C1 compares the performance of the simple target criteria from Table 2 under the infinite-
horizon Phillips curve. The equivalent values for the one-step-ahead Phillips curve (i.e. Table D1) are

25 An alternative form of this optimal target criterion is

πt =−α
κ

xt +

(
λ

L
1−θL

+(1−λ )gρ2 β 2

1−βθρ
IEt

L−1

1−βρ(1−g)L−1

)(
(1−θ)

α
κ

xt −θπt

)

26With the one-step-ahead Phillips curve, commitments about policy more than one period ahead still influence current-
period outcomes via the inflation expectations of rational agents. But this effect occurs via a general equilibrium channel
and is therefore dampened by the presence of non-rational agents. With the infinite-horizon Phillips curve, these
commitments affect the pricing decisions of rational agents directly, via both their inflation and output gap expectations,
without this dampening.
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in parentheses. The results are fairly similar. As the previous paragraph would suggest, the main
differences are that with the infinite-horizon Phillips curve (i) the optimal weight γ on lagged inflation
outcomes in the WAIT is higher, and PLT now outperforms IT; and (ii) a pre-emptive response to
expected inflation now offers a small welfare improvement.

Table C1: Performance of Simple Target Criteria with Infinite-horizon Phillips Curve –
Unconstrained Case

Rule Loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 61.1 (96.5) 16.9 (31.3)
2-yr AIT 16.8 (48.8) 18.5 (13.0)
1-yr AIT 2.8 (7.7) 15.0 (21.5)
IT 0 (0) 10.6 (11.6)
IT + pre-emptive –0.0 (–4.4) 10.6 (0.03) 0.00 (1.09) undef (1.50)
PLT –5.9 (6.6) 6.6 (9.1) 1 (1)
WAIT –11.0 (–6.6) 6.9 (8.4) 0.70 (0.52)
WAIT + pre-emptive –12.5 (–6.6) 5.5 (8.2) 0.89 (0.52) 10.92 (0.33) 0.00 (1.02)
WAIT + WAXT –12.5 (–6.6) 8.0 (8.4) 0.88 (0.53) 0.43 (0.01)
WAIT + WAXT –12.5 (–6.6) 7.9 (8.2) 0.88 (0.52) 0.43 (0.00) 0.12 (0.33) 0.03 (1.02)
+ pre-emptive

Optimal –12.5 (–6.6)
Notes: Welfare losses are normalised relative to the welfare under IT. The parameters for each rule are optimised to minimise welfare.

The optimal value of a parameter is undefined (labelled undef) if the parameter has no effect on loss at the optimum. Values in
parentheses are the equivalent values with the one-step-ahead Phillips curve (from Table D1).

C.3 Comparison to Eusepi, Giannoni and Preston (2018)

Eusepi et al (2018) study optimal policy in an adaptive learning model (without imperfect information
or the ZLB). They show that in this setting, the infinite-horizon Phillips curve under some calibrations
implies that optimal policy is history dependent, whereas it is not history dependent under the one-
step-ahead Phillips curve.

If we set λ = 0, our model nests theirs. Optimal policy is given by setting λ = 0 in (C4):

α
κ

xt =−πt −g
β 2ρ2

1−βθρ
IEt

1

1−βρ
(

1−g 1−βρ
1−βθρ

)
L−1

πt+1

Setting θ = 0 in this targeting rule gives optimal policy with λ = 0 and the one-step-ahead Phillips
curve, as studied by Molnár and Santoro (2014). Therefore using the infinite-horizon Phillips curve
just increases the coefficient on the average of expected future inflation (while also slightly increasing
the weight on nearer-term expectations within that average compared to further out expectations).
With λ = 0, optimal policy always involves no (direct) response to any lagged variables.

The difference in the optimal equilibrium stems not from the optimal policy rules, but from the direct
effect of beliefs on the Phillips curve. Only inflation beliefs enter the one-step-ahead Phillips curve,
so the Phillips curve will always shift up following an inflationary cost-push shock, then return to its
original position. In contrast, both inflation and output gap beliefs enter the infinite-horizon Phillips
curve. If the loss function places sufficiently low weight on the output gap term, then the central
bank’s aggressive response will cause the Phillips curve to shift downwards (once the initial shock
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has dissipated), which means that inflation will overshoot. It is the private sector pricing decisions
that are history dependent (via beliefs) and overshoot, not the policy rule.

C.4 General case

If there is a constraint on the policy rate (e.g. due to imperfect central bank information or the ZLB),
then σ(1−L)µ i

t = µx
t , where µ i

t is the multiplier on this constraint. Substituting this condition in for
µx

t and eliminating µπ
t from the first-order conditions gives

α
κ xt =− 1−θ(1−λ )L

1−(λ+θ(1−λ ))Lπt +
1−θ(1−λ )L

1−(λ+θ(1−λ ))Lρgµωπ
t + ρg

κ µωx

t

+
(

λ
β

κ
σ

1−θ(1−λ )L
1−(λ+θ(1−λ ))L +λ

(
1
β −1

)
+1
)

σ
κ µ i

t−1
(C5)

The multipliers on learners’ beliefs are

µωπ
t = βρ(1−g)IEt µ

ωπ
t+1 − (1−λ ) (1−θ)β 2ρ

1−βθρ IEt
1−θL

1−(λ+θ(1−λ ))L

(
πt+1 − λ

β
κ
σ

σ
κ µ i

t −ρgµωπ
t+1

)
+(1−λ ) βρ

1−βρ IEt(1−L)µ i
t+1

µωx

t = θ
1−θ κµωπ

t +(1−λ ) βρ
1−βρ

(
(1−β )− θ

1−θ
κ
σ
)

IEt
1

1−βρ(1−g)L−1 σ(1−L)µ i
t+1

Solving forward for µωπ
t gives

µωπ
t =−(1−λ ) (1−θ)ρ

1−βθρ Ω′ 1−(λ+θ(1−λ ))L
1−ζ ′

1L
IEt

1
1−ζ ′−1

2 L−1
1−θL

1−(λ+θ(1−λ ))L

(
πt+1 − λ

β
κ
σ

σ
κ µ i

t

)
+(1−λ ) ρΩ′

β (1−βρ)
κ
σ

1−(λ+θ(1−λ ))L
1−ζ ′

1L
IEt

1−L
1−ζ ′−1

2 L−1
σ
κ µ i

t+1

Using this solution to substitute for µωπ
t and µωx

t in (C5) and collecting all the non-µ i
t terms in π̃t

gives

π̃t +
σ
κ µ i

t = λ
β

κ
σ

1−θ(1−λ )L
1−(λ+θ(1−λ ))L

σ
κ µ i

t−1

+(1−λ )g ρ2
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κ
σ

1−θL
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1L
IEt

1
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1−θL
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κ µ i
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IEt
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where π̃t is the residual from the unconstrained optimal target criterion (C4) and Θ′, P′(L), P′
1(L

−1),
P′

2(L) and P′
3(L

−1) are defined as

Θ′ =− Ω′
1−βθρ

λ
β

κ
σ

1−ζ ′−1
2 θ

1−ζ ′−1
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β (1−βρ)(1−θ)
κ
σ + β
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(
(1−β )− θ

1−θ
κ
σ
)
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Now define π∗
t and ∆t as in Appendix A.2:

π∗
t ≡ 1

1+(1−λ )gρ2Θ′
σ
κ

(
P′(L)µ i

t−1 + IEtP
′
1(L

−1)µ i
t+1 +P′
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t − π̃t =
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1+(1−λ )gρ2Θ′
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so we have

π̃t +∆t = π∗
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1+(1−λ )gρ2Θ′
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P′(L)∆t−1 + IEtP
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)
The optimal target criterion is then the same as with the one-step-ahead Phillips curve in Result 5,
with the newly defined Θ′, P′(L), P′

1(L
−1), P′

2(L) and P′
3(L

−1).

As in the unconstrained case, the main differences between this optimal target criterion and the one
with the one-step-ahead Phillips curve are that (i) the weight on lagged misses is larger, because
commitments further in the future have a larger effect on current-period inflation via the Phillips
curve, and (ii) the optimal pre-emptive response to expected future misses is larger, because the
central bank has greater effect on future outcomes now that learners’ beliefs about both inflation
and the output gap affect inflation.

Since both the make-up and pre-emptive channels of policy are stronger, the interaction between
them is also strengthened. But this interaction has offsetting effects, so the change in optimal policy
is small.27

Table C2 compares the performance of the simple target criteria from Table 2 under the infinite-
horizon Phillips curve with imperfect central bank information. The equivalent values for the one-
step-ahead Phillips curve (i.e. Table 3) are in parentheses. The results are very similar.

27 The dynamic interaction between rational and learners’ expectations in the Phillips curve tends to strengthen the effect
of both make-up and pre-emptive policy relative to its cost (this is captured in the first term in Θ′). But the dynamic
interaction between rational interest rate expectations and learners’ inflation and output gap expectations lowers the
benefits of make-up and pre-emptive policy relative to cost (this is the second and third terms in Θ′).
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Table C2: Performance of Simple Target Criteria with Infinite-horizon Phillips Curve –
Imperfect Information Case

Rule Loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 18.2 (24.6) 23.8 (27.4)
IT 0 (0) 20.9 (20.9)
IT + preemptive –2.3 (–14.8) 27.1 (0.0) 10.04 (1.60) 1.28 (1.75)
2-yr AIT –5.9 (–4.5) 34.3 (27.9)
1-yr AIT –12.3 (–15.7) 24.4 (15.6)
PLT –18.8 (–23.8) 9.2 (20.3) 1 (1)
WAIT –20.0 (–25.1) 9.6 (17.4) 0.80 (0.75)
WAIT + pre-emptive –20.0 (–25.1) 9.6 (17.4) 0.80 (0.75) 0.00 (0.00) undef (undef)
WAIT + WAXT –29.5 (–35.4) 10.0 (12.3) 0.97 (0.94) 0.69 (0.89)
WAIT + WAXT –29.5 (–35.4) 10.0 (12.3) 0.97 (0.94) 0.69 (0.89) 0.00 (0.00) undef (undef)
+ pre-emptive

Optimal –30.5 (–36.5)
Notes: Welfare losses are normalised relative to the welfare under IT. The parameters for each rule are optimised to minimise welfare.

The optimal value of a parameter is undefined (labelled undef) if the parameter has no effect on loss at the optimum. Values in
parentheses are the equivalent values with the one-step-ahead Phillips curve (from Table 3).

C.5 Robustly optimal policy under parameter uncertainty with the infinite-horizon
Phillips curve

Tables C3 and C4 replicate the robustly optimal policy exercise in Tables D2 and 4, but with the
infinite-horizon Phillips curve. The results are very similar.

Table C3: Policy under Parameter Uncertainty with Infinite-horizon Phillips Curve –
Unconstrained Case

Rule Average loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 5.6×1011 (535.6) 1.0 (1.2)
2-yr AIT 187.8 (136.1) 1.1 (7.4)
1-yr AIT 86.3 (9.7) 2.6 (19.9)
PLT 0.5 (4.2) 8.0 (10.9) 1 (1)
IT 0 (0) 6.2 (13.7)
IT + pre-emptive –9.9 (–0.4) 6.4 (3.0) 10.37 (14.9) 0.00 (0.42)
WAIT –14.6 (–8.1) 7.0 (9.2) 0.53 (0.56)
WAIT + WAXT –15.4 (–8.1) 6.9 (9.4) 0.73 (0.60) 0.29 (0.08)
WAIT + pre-emptive –16.5 (–8.9) 5.5 (7.2) 0.74 (0.67) 11.60 (7.4) 0.00 (0.51)
WAIT + WAXT –16.6 (–8.9) 6.6 (7.2) 0.73 (0.67) 0.17 (0.00) 6.91 (7.4) 0.00 (0.51)
+ pre-emptive

Optimal –21.2 (–13.7)
Notes: The parameters reports are set to maximise the average loss across all points in the grid. Average welfare losses are normalised

relative to the welfare under IT. Values in parentheses are the equivalent values with the one-step-ahead Phillips curve (from
Table D2).
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Table C4: Policy under Parameter Uncertainty with Infinite-horizon Phillips Curve –
Imperfect Information Case

Rule Average loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 2.3×1011 (118.0) 1.0 (1.4)
2-yr AIT 58.9 (19.8) 0.8 (9.2)
1-yr AIT 27.0 (–16.6) 2.0 (20.7)
IT 0 (0) 4.8 (20.9)
PLT –16.8 (–22.4) 7.4 (16.8) 1 (1)
IT + pre-emptive –17.3 (–1.3) 6.7 (14.9) 16.92 (13.0) 1.67 (1.52)
WAIT –22.7 (–24.0) 6.1 (15.1) 0.66 (0.75)
WAIT + WAXT –26.9 (–31.0) 4.7 (14.5) 0.83 (0.87) 0.28 (0.69)
WAIT + pre-emptive –27.0 (–24.0) 12.1 (15.1) 0.65 (0.75) 14.53 (0.0) 0.00 (undef)
WAIT + WAXT –33.5 (–31.1) 8.9 (13.3) 0.86 (0.87) 0.51 (0.66) 14.54 (6.8) 0.28 (0.00)
+ pre-emptive

Optimal –38.2 (–35.7)
Notes: The parameters reports are set to maximise the average loss across all points in the grid. Average welfare losses are normalised

relative to the welfare under IT. The optimal value of a parameter is undefined (labelled undef) if the parameter has no effect
on loss at the optimum. Values in parentheses are the equivalent values with the one-step-ahead Phillips curve (from Table 4).
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Appendix D: Robustly Optimal Policy in the Unconstrained Case

This appendix replicates the numerical results in Section 5 for the unconstrained case, where the
central bank has perfect control of the output gap (i.e. perfect information and no ZLB).

D.1 Simple target criteria in the unconstrained case

Table D1 presents the optimal simple target criteria (defined in Table 2) under the baseline calibration.
Optimal policy reduces the loss by 6.6 per cent compared to the loss under the IT rules. These gains
can be almost entirely achieved by following a WAIT rule with a decay parameter of 0.52 (close to the
share of rational agents, λ = 0.5). Placing additional weight on past output gaps or expected future
inflation offers very small, if any, benefit. The importance of pre-emption is small when there is a
reasonable share of rational forward-looking agents. The optimal pre-emptive respones to expected
inflation can largely be achieved by a strong response to current and past inflation (especially because
the cost-push shock is AR(1)). The price level targeting rule and especially the simple AIT rules
perform poorly. Compared to the general case in Table 3, the optimal weight on lagged outcomes is
smaller and IT performs better, which aligns with the analytical results in earlier sections.

Table D1: Performance of Simple Target Criteria – Unconstrained Case
Rule Loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 96.5 31.3
2-yr AIT 48.8 13.0
1-yr AIT 7.7 21.5
PLT 6.6 9.1 1
IT 0 11.6
IT + pre-emptive –4.4 0.03 1.09 1.50
WAIT –6.6 8.4 0.52
WAIT + WAXT –6.6 8.4 0.53 0.01
WAIT + pre-emptive –6.6 8.2 0.52 0.33 1.02
WAIT + WAXT + pre-emptive –6.6 8.2 0.52 0.00 0.33 1.02
Optimal –6.6
Notes: Welfare losses are normalised relative to the welfare under IT. The parameters for each rule are optimised to minimise welfare.

D.2 Optimal policy under parameter uncertainty in the unconstrained case

Table D2 shows the average welfare and optimised parameter values for each target criterion
when the policymaker is uncertain about expectations formation (i.e. across a set of different λ
and g values). It also shows the average loss that would be achieved if the optimal criterion was
implemented at each point of the grid, which represents the minimum loss achievable. As in the
imperfect information case (Table 4), WAIT rules perform well, although the decay parameters are
a bit lower at 0.56 to 0.67. Unlike the imperfect information case, there is little gain from making
up for past output gaps via a WAXT component. This is consistent with the analytical optimal target
criterion in result (17), in which no lagged output gap terms appear. The PLT rule performs poorly in
the unconstrained case, and the 5-yr and 2-yr AIT rules always perform poorly.

Note that under the infinite-horizon Phillips curve, the optimal make-up weights in the unconstrained
case are a bit larger (see Appendix C.2), so optimal policy in the unconstrained case is not as different
from the constrained case.
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Table D2: Policy under Parameter Uncertainty – Unconstrained Case
Rule Average loss ψ γ γx ψ f γ f

(% relative to IT)
5-yr AIT 535.6 1.2
2-yr AIT 136.1 7.4
1-yr AIT 9.7 19.9
PLT 4.2 10.9 1
IT 0 13.7
IT + pre-emptive –0.4 3.0 14.9 0.42
WAIT –8.1 9.2 0.56
WAIT + WAXT –8.1 9.4 0.60 0.08
WAIT + pre-emptive –8.9 7.2 0.67 7.4 0.51
WAIT + WAXT + pre-emptive –8.9 7.2 0.67 0.00 7.4 0.51
Optimal –13.7
Notes: The parameters reports are set to maximise the average loss across all points in the grid. Average welfare losses are normalised

relative to the welfare under IT.

To show what lies behind the average losses in the table, Figure D1 plots the loss under a selection
of target criteria from Table D2 for different values of the expectation formation parameters λ and
g. The parameters in the policy rules are held fixed at the robustly optimal values set to minimise
average loss and not optimised for each λ and g shown in the figure. The dashed line shows the
optimal target criteria optimised at each point to show how close the simple rules with the average
coefficients can come to the fully optimal policy.

The IT rule performs well when λ is low, which is the expected result under adaptive learning. The
PLT rule performs well when λ is high, close to the rational expectations benchmark, but unlike
the constrained case, it performs quite poorly when λ is low. This is because nominal interest rate
expectations are irrelevant when the central bank can perfectly control the output gap, so make-up
commitments have zero effect when λ = 0.

As in the constrained case, the WAIT rules perform consistently well across all parameter values.
This is the case even though we have fixed the weight in the WAIT rules to the robustly optimal
values in Table D2 so it is a fair comparison with the IT and PLT rules. Only in the optimal policy
benchmark do we allow the policy rule parameters to change as we vary λ and g. The performance
of the fixed-coefficient simple WAIT rules is remarkably close to the optimal benchmark, illustrating
the robustness of this form of FAIT.
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Figure D1: Loss under Different Parameter Values – Unconstrained Case

Varying λ

0.0 0.2 0.4 0.6 0.8
0.008

0.009

0.010

0.011

0.012

0.013

loss

λ

Varying ℊ

0.2 0.4 0.6 0.8 1.0
0.009

0.010

0.011

0.012

0.013

0.014

loss

ℊ

Optimal IT PLT WAIT
IT + pre-emptive WAIT + pre-emptive

Notes: The parameters in the policy rules are fixed at the robustly optimal values presented in Table D2. For the other
parameters (other than the one changing), we set λ = 0.5, g = 0.08, ρ = 0.95, κ = 0.1, σ = 1, ρrn = ρu = 0.5,
σrn = 1 and σu = 0.1.
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