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Abstract
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1 Introduction

Stars were historically used as a navigational tool to guide travellers on a journey. To-

day, stars play a similar role in the conduct of macroeconomic policy. When an asterisk

is attached to variables such as output, interest rates, or inflation, these variables are col-

lectively known as ‘stars’, and the reference is to an equilibrium state towards which the

economy is expected to adjust. Potential output, the neutral real rate of interest and the

Non-Accelerating Inflation Rate of Unemployment (NAIRU) are prominent stars.

Stars might be thought of as the steady-state values that exist in some theoretical model.

Since they would be functions of the model’s parameters, any changes in the star variable

itself would necessitate changes in the parameters of the model. Often, such changes are

difficult to account for, because stars are likely to be complex, non-linear functions of the

model’s parameters. Consequently, a simpler, commonly used, alternative treats the star

variable as a latent exogenous process, with a popular choice being a driftless random walk.

As the star variable is not directly observed, it needs to be estimated from data. This is

typically done with a State Space model that captures the latent variable and either a Kalman

filter or smoother is used to extract a measure of the latent star variable. As will be seen, in

almost all such implementations the number of shocks in the model exceeds the number of

observed variables. Adopting the description of Forni et al. (2019), such a system is said to

be ‘short’. A key finding from recent theoretical work on shock recovery is that it is never

possible to recover all the shocks from a short system, so this raises the question of whether

one can recover the star variable of interest.

The objectives of this paper are two-fold. First, we demonstrate the importance of the

literature on shock recovery for the modelling of star variables and, more broadly, for policy

analysis. While it is well known that the model parameters used to construct the stars are

typically estimated imprecisely (e.g., Staiger et al., 1997 and Laubach and Williams, 2003),

particularly when this is done in real time (Orphanides and van Norden, 2002) and such an

outcome creates practical issues for policy analysis, it is not well known that these models

may be unable to recover the star variable of interest to the policy maker even when the model

is correctly specified and its true parameters are known. Second, we provide a critical review of

widely used models that were developed to provide estimates of stars for policy analysis.

Short systems, which cannot recover all the shocks in the model, are typically used to es-

timate stars. Nevertheless, they may be able to recover the shocks that drive the star. Moreover,

the ability to recover the star will vary from model to model. Not all short systems are equal.

Quantifying shock and star recovery is important information for researchers. Understand-

ing a model’s limitations regarding recovery can prompt further investigation of variants or
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alternatives to it. It is meant to complement diagnostics which focus on model misspecifi-

cation, but it examines a very different issue. Likewise it provides different information to

confidence or highest posterior density intervals of a star - for example, recovery is about

the model’s properties in ideal situations. We believe it is important for a policymaker, who

may need to choose between different star estimates from various alternative models, to

know each model’s ability to recover the star.

Star recovery is not a parameter estimation issue. In all our analysis, we evaluate star

recovery by assuming that the model being used is correctly specified and that its true pa-

rameters are known. The focus is on whether the model used to find the star can do that,

even when there are no issues about its ability to fit the data. To us, the ability of a model to

recover the star variable of interest that it was designed for is a minimal, desirable property

that needs to be satisfied. This is not to deny the fact that, even if we find that the model

under investigation can recover the star, there are other dimensions, such as the real-time

reliability of its estimates, which are also desirable and highly relevant for the conduct of

policy. Recovery essentially measures whether the assumed system contains enough infor-

mation to find the shocks or stars of interest when its parameters are known with certainty.

Recovery performance is not binary — different models will give different degrees of

recovery. It is thus important to have a standardized way to measure and communicate

a model’s ability to recover a star. We demonstrate how this can be done simply with a

correlation coefficient. This correlation coefficient will help policymakers discern between

star estimates from multiple models.

It is our view that those presenting estimates of stars from short systems should be

obliged to show that the model can in fact recover the star variable of interest. The correla-

tion coefficient that we propose should be routinely reported when estimating star variables,

in the same way that one reports standard errors or confidence intervals to gauge the level of

uncertainty surrounding point estimates of parameters computed from a statistical model.

Presently, this is not being done.

The remainder of the paper is structured as follows. Section 2 defines the concept of re-

coverability, the implications of a short system for recoverability, and distinguishes between

recoverability and statistical uncertainty. It also provides a summary of recently developed

approaches to assess shock recovery and explains how these can be extended to examine

recoverability of star variables.

In Section 3, several applications aimed at recovering star variables are provided. There

are many star variables; to focus our analysis we primarily examine models intended to es-

timate the neutral real rate of interest. We analyze whether the neutral rate can be recovered

by the influential Laubach and Williams (2003) model and its later updates in Holston et al.
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(2017, 2023). An extension of that model in McCririck and Rees (2017) is examined. This

variant is used in the Reserve Bank of Australia’s policy model (Ballantyne et al., 2020). In

all these models, we find that the ability to recover the star variables of interest is limited.

This lack of recovery persists in an extended version which includes an interest rate rule.

Section 4 turns to recent alternative approaches. Schmitt-Grohé and Uribe (2022) pro-

pose a different type of structural model that incorporates permanent monetary shocks to

estimate stars. Their approach is more successful in recovering the neutral real rate. How-

ever, it crucially depends on the magnitude of one parameter, which attributes what might

be thought to be an unrealistically high percentage (nearly 80%) of the variation in output

growth to the neutral real rate shock. Once this parameter is set to what seems a more

reasonable value, the natural real rate cannot be recovered.

This section also investigates an entirely different approach that avoids providing an

explicit structural model for the star variable, instead defining it via a Beveridge-Nelson

(1981) decomposition. Two such approaches, namely, Morley, Tran and Wong (2023), and

Lubik and Matthes (2015), are examined. The former is more successful than the Laubach

and Williams (2003) based approaches, although it also does not completely recover the star.

In Section 5 we discuss stochastic volatility. This is an increasingly popular feature of

macroeconomic models that may unintentionally obscure the stars since it results in short

systems. Lastly, Section 6 describes an alternative approach to estimating stars which has

been used by Okimoto (2019) to measure trend inflation. Okimoto does not add extra shocks

to the system and thereby avoids recovery problems associated with short systems. Section 7

concludes the paper.

2 Recovering Latent Variables from Models

2.1 What is recoverability?

To answer this question, we utilize models that can be written in the following State Space

Form (SSF):

Measurement : Zt = D1Xt + D2Xt−1 + Rεt (1)

State : Xt = AXt−1 + Qεt, (2)

where εt is a multivariate normal distributed random variable with a zero mean and iden-

tity covariance matrix, D1, D2, A, R are Q are conformable system matrices, Zt contains the
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observed variables and Xt the latent states.1 There may be identification and other econo-

metric issues in estimating D1, D2, A, R and Q when there are more shocks than observables.

Such issues are discussed in Buncic (2024) for the model of Holston, Laubach and Williams

(2017, HLW) that aims to capture the neutral real rate of interest.2 Despite the empirical im-

portance of such estimation problems, we will assume that the numerical values provided

in the papers of the models considered are the true values. This is done to abstract from

estimation issues in our analysis, since our concern is the recovery of shocks and the star

variable from a given model and parameters.

There are two ways of looking at equations (1) and (2) describing the relationship be-

tween observed variables, latent states and shocks. One of these makes assumptions about

the assumed shocks εt and, given D1, D2, A, R, Q, characteristics such as variances and co-

variances of the random variable Zt can be determined. In this form, the analysis is working

from the right to left of the SSF equations. In addition to knowing the model parameters

there are auxiliary assumptions about the nature of εt, for instance, that they are uncorrelated.

Given these, the SSF can be used to tell the investigator about the assumed model properties of

variable Zt, e.g., what the assumed model says about the variance of Zt.

A different perspective comes from introducing data into the model. Now the LHS of (1)

has the data ZD
t , and this is used to recover the shocks. The data will be used to produce

either filtered or smoothed shocks. We will largely work with smoothed shocks and denote

them by ETεt. Thus, smoothed shocks at time t are defined as the expectation of the shock

εt using all the T observations in the sample. Filtered shocks are denoted by Etεt, and are es-

timated using data up to time period t. Designating the data as ZD
t , the (Kalman smoothed)

system can be expressed as:

ZD
t = D1ETXt + D2ETXt−1 + RETεt (3)

ETXt = AETXt−1 + QETεt. (4)

Given a set of data (and D1, D2, A, R, Q), one obtains smoothed shocks from the Kalman

smoother. Recovery is achieved when we can obtain εt from the data using ETεt. If it is

possible to recover εt, then it is possible to recover the latent variables Xt, as these are a function of

the shocks. Recovering shocks and stars is intrinsically interrelated.

It is important to highlight here once more that recovery is not a parameter estimation

issue, as we have assumed all parameters to be known. It is an information issue. It exam-

ines whether it is possible to recover the assumed (theoretical) shocks from the available

1To reduce the size of the state vector, we will utilize the SSF and the Kalman Filter of Nimark (2015), which
adds a lagged state to the measurement equation, and the smoother of Kurz (2018).

2This is sometimes also called the natural real rate; we use these terms interchangeably.
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information — the data — when using the estimate ETεt and the known parameters.

The ability of a model to recover the latent star variable one is trying to estimate when the

model is correct and all its parameters are known would seem to be a self-evident, minimal

property that any model should satisfy, especially when used to make policy decisions.

2.2 Implications of short systems for recoverability

When the number of shocks equals the number of observed variables, then εt and ETεt gen-

erally coincide and recovery is satisfied. Therefore, whether the shocks εt have their as-

sumed properties can be directly assessed using the estimated ETεt. Conversely, when there

are more shocks than observables, the system is said to be ‘short’ (Forni et al., 2019), and

recovery is not ensured.

To illustrate the implications of this, it is useful to think about a ‘short’ system in the

simplest possible scenario where we have one observed variable and two shocks ε1t and

ε2t that are n.i.d(0, 1) and uncorrelated with each other. We then obtain the following two

equations corresponding to (1) and (3):

Zt = ε1t + ε2t (5)

ZD
t = ETε1t + ETε2t (6)

=
[

1 1
] [ ETε1t

ETε2t

]
= GETεt. (7)

From the relation in (7), it is apparent that ETεt cannot be recovered uniquely from ZD
t ,

because G is not a square matrix, and thus does not have an inverse. If G was square, then

we would have a solution for ETεt = G−1ZD
t , and G−1 would satisfy GG−1G = G. When G

is not square, G−1 is replaced by a generalized inverse G+ that satisfies GG+G = G. Then

ETεt = G+ZD
t .

Letting G+ =

[
g1
g2

]
, GG+G = G implies that

g1 + g2 = 1,

and so there are many values for g1. To select one, it is common to find the value that

minimizes G+′G+. For this case it yields

G+ =

[
.5
.5

]
,
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which implies that ETε1t = .5ZD
t = ETε2t. That is, the smoothed shocks ETε1t and ETε2t are

identical to one another, and thus cannot be separated using the data.3

A different way of looking at this is to observe that the Kalman smoother would ask

what value of g1 would make ETε1t = g1Zt as close as possible to ε1t in a mean squared

error (MSE) sense. That means minimizing E[(ε1t − g1Zt)2] with respect to g1 and so

min
g1

E[(ε1t − g1ε1t − g1ε2t)
2]

= min
g1

[(1 − 2g1 + 2g2
1]

=⇒ g1 = .5.

Consequently Var(ε1t − .5Zt) = .5.

The example is useful for illustrating some of the points made above. First, if one only

knows that Var(ε2t) = 1, it will be necessary to estimate Var(ε1t) from data to produce es-

timates of G and the smoothed shock ETε1t. As explained earlier we want to avoid this

extra complication so as to ask whether the model can recover the shocks in the best possi-

ble circumstances. Second, one can compute a decomposition of the Var(Zt) using just the

assumed model and the auxiliary assumptions about the shocks in it. This would say that

each shock contributes 50% of the Var(Zt). Finally, the variance of the data Var(ZD
t ) cannot

be decomposed in such a way. As seen in (6), a decomposition of the data involves smoothed

shocks, but these are perfectly correlated with each other, so the smoothed shock explains

100% of the variance of Zt — there is no decomposition into the effects of separate shocks.

If, for example, one thought of Zt as inflation and ε1t and ε2t as demand and supply shocks,

we would find that either ”demand” or ”supply” explains all of the variation in inflation.

The general lessons learned from the above simple example are that a variance decom-

position of Zt with respect to the εt — as is suggested in Plagborg-Møller and Wolf (2022)

— comes from the model and its auxiliary assumptions. In a short system this is not a vari-

ance decomposition of the data since some of the estimated shocks will be correlated and this

is counter to the central assumption underlying a variance or variable decomposition that

the smoothed shocks are uncorrelated (Pagan and Robinson, 2022). Indeed, in more com-

plex models the relationship between smoothed shocks is not just a simple correlation, but a

complex dynamic one, making it very difficult to assess the economic importance of changes

in the star variables. The models we examine below have such complex relationships.

3The Kalman filter and smoother effectively work with a generalized inverse.
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2.3 Assessing shock recoverability

In a short system, not all of the assumed shocks can be recovered. However, it may be

possible to recover some shocks from the model being used, potentially those of relevance

to policy makers which determine the star variable of interest. Consequently, we need to

review methods in the literature in order to show which shocks can be recovered. We discuss

how these methods are related.

Forni et al. (2019), building on Sims and Zha (2006), developed a deficiency index to

determine whether in an SVAR there is sufficient information to recover a particular shock

from current and past information. They find that it may be possible to do so, even when

the system as a whole is not invertible. Their deficiency index fundamentally examines the

recovery of the shock from its filtered estimates.

Chahrour and Jurado (2022) extended the concept of invertibility of an SVAR to con-

sider an expanded information set which incorporated future information. They termed this

recoverability and looked at ϕ = Var (ε1t − ETε1t) to assess that. By the definition of a condi-

tional expectation, ε1t = ETε1t + vt, where the signal ETε1t is uncorrelated with the ”noise”

vt. Hence, Var (ε1t) = Var (ETε1t) + Var (vt) and ϕ = Var (ε1t − ETε1t) = Var (vt) . Because

Var (ε1t) = 1, we have 0 ≤ ϕ ≤ 1.

Pagan and Robinson (2022) noted that the Kalman smoother gave ETε1t, as well as ϕ, the

latter via the MSE of the state vector, defined as E
[
(Xt − ETXt) (Xt − ETXt)

′] and commonly

denoted by Pt|T. To compute ϕ therefore all that needs to be done is to add the shock to the

state vector of the SSF and apply the Kalman smoother. This is done with the steady-state

version of the MSE (and Kalman filter), and we will call this P∗
t|T. As it is the steady-state

version recovery is assessed as if there is an infinite amount of future data. This approach

can be implemented for a wide range of models.

Plagborg-Møller and Wolf (2022) alternatively suggested the use of the R2 from a popu-

lation regression of the model shock ε1t against the smoothed shock ETε1t.4 As ETε1t is the

”signal” and Var (ε1t) = 1, it follows that this R2 = Var(ETε1t), and Var(vt) = ϕ = 1 − R2.

An appealing aspect of these measures is that they generalize to non-linear models, pro-

vided a filter and smoother to compute ETε1t is available. Working with ρ =
√

R2 produces

the correlation between ε1t and ETε1t. That may be a more meaningful measure for decision

makers to interpret. In any case, ϕ = 1 − ρ2 so it is a simple matter to convert one measure

into the other.5

4Instead of calculating this quantity from the smoothed shocks obtained from the data, it is more appropriate
to use its population counterpart, which can be found by simulating a long sequence of data from the model,
applying the Kalman filter and smoother to obtain ETε1t, and then computing the R2 using the known ε1t and
ETε1t.

5Because we generally use the steady state filter to find P∗ there can be some minor differences between the
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When the shock is recoverable, ETε1t = ε1t and ϕ = 0 (ρ = 1). If it fails to be recoverable

ϕ = 1 (ρ = 0). In the latter case,Var (ETε1t) = 0 and this is as far away from Var(ε1t) = 1 as

one can get.

In summary, these measures of recoverability all are essentially answering the question:

If a set of the observed series of infinite length were generated from the model

with known parameters, could we then recover the shocks from these data?

2.4 Assessing star recoverability

The primary message of this paper is that if a star variable is modelled as a function of unre-

coverable shocks, then the star variable itself cannot be recovered from the data. Therefore,

recovery can be assessed by the measures above, such as ϕ or ρ, for the relevant shocks.

Nonetheless, there are three aspects that require attention. First, as the star may be a combi-

nation of multiple shocks, focusing directly on recovery of the star, rather than the shocks,

can be useful. Second, in many instances, it is assumed that the star variable follows a

non-stationary process. In this case, it would be the correlation between the appropriately

differenced series and its smoothed counterpart that is assessed for recovery. Third, it is

useful to normalize the star variable by its standard deviation, which is similar to working

with standardized shocks that have a unit variance by definition.

The correlation is a highly useful and intuitive way of communicating the degree to

which a model can recover a star variable. Indeed, our view is that one should always report

such a correlation measure in the same way that confidence intervals are routinely reported

to gauge the level of statistical uncertainty surrounding point estimates of parameters. It

can be used in at least two ways. First, as a guide to a policymaker. The correlation is

essentially an indication of whether the model is informative about the star variable under

the most ideal circumstances — when the model is correctly specified and its parameters are

known. Often policy institutions maintain a “suite of models”. There are numerous ways to

estimate stars, and a policymaker may down-weight those with a low correlation. Indeed,

one could consider “model averaging” of star estimates using the normalized correlations

as aggregation weights.6

The second way that the correlation can be used is by researchers. A low correlation can

prompt a re-examination of the model. In some cases, like the Ireland (2004) model exam-

ined in Pagan and Robinson (2022), an extra observed variable may be readily available, so

computed ϕ and 1 − ρ2, so we will present both P∗ and ρ.
6Of course this brings up the issue of how low a value of ρ would be acceptable to someone using a model to

compute a star variable. It is the same issue as choosing a critical value for a t−ratio. The costs of making a
bad decision because ρ is low need to be stated and will depend on the decision maker. Our point is that if one
is using a model to measure a star, a decision maker (and a reader) would want to know the magnitude of ρ.
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that the system can be augmented to no longer be short. However, when estimating stars

this may be difficult to achieve, and sometimes working with a short system may be un-

avoidable. Still, it may be the case that the model is short because of the introduction of

shocks that are simply added on for convenience, e.g., to capture measurement errors in the

data. These could be removed to produce a system that is not short.

A subtlety with using the correlation to inform model design is that it is possible for a

correctly specified model to have a low correlation. Studying recoverability in a star model

is assessing its ability to deliver on its intended aim in the best possible circumstances.

Whether a model is correctly specified should still be assessed with standard model di-

agnostics. Implementing some of these tests is less straightforward in short systems as its

smoothed shocks must be correlated.7

Introducing more information by adding observables to a short system with a low corre-

lation is always desirable. One possibility is to expand the set of observables with forecasts.8

Adding forecasts and relating them to model-consistent forecasts in the estimation of poten-

tial output was implemented by Alici et al. (2017) with the motivation of lessening endpoint

issues. Although the system remains short, recovery could conceivably be improved. Fore-

casts can also be used as a measure of conditional expectations, for example, inflation expec-

tations in a Phillips curve to estimate the NAIRU.9 A recent noteworthy example is Crump

et al. (2019), who include survey forecasts from professional forecasters.10 In our opinion,

exploring further how forecasting data sets can be used to aid the recovery of stars seems to

be a productive area for future research.

3 Applications Aimed at Recovering Stars

To illustrate recoverability issues, we first consider the model used by Laubach and Williams

(2003) to estimate the neutral real rate and their subsequent updates, Holston et al. (2017)

and (2023). We then turn to a model that builds upon Laubach and Williams (2003), namely

McCririck and Rees (2017), and estimates three stars simultaneously: the NAIRU, the neutral

real rate, and potential output. In all of these cases, there are problems with recovering the

star variables, particularly the neutral real rate.

7Pagan and Robinson (2022) present an indirect inference approach for assessing if the correlation in the
estimated shocks aligns with what was assumed by the model.

8See, for instance, Hirose and Kurozumi (2021) in the news literature, examined in the working paper version
of this paper.

9The importance of inflation expectations measures for NAIRU estimates is discussed by Ellis (2019). Fore-
casts have been used for conditional expectations in news models, e.g. Barsky and Sims (2012).
10Crump et al. (2019) allow for measurement error, which is sensible as the expectations of households and
professional forecasters can differ — see Dräger et al. (2016).
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We provide code and detailed documentation to replicate the results from models in this

paper on a GitHub repository at: https://github.com/4db83/Recovery-code. The reposi-

tory also includes additional models, such as the Hodrick and Prescott (1997) filter.

3.1 Recovering the Neutral Real Rate - Laubach and Williams (2003)

One of the most influential models of the neutral real rate r∗t of the past two decades is that

of Laubach and Williams (2003, LW). There exist numerous alternative and/or extended

versions of the LW model in the literature, and these are widely used at central banks and

other policy institutions. The LW model consists of the following equations:

ỹt = α1ỹt−1 + α2ỹt−2 +
ar

2

2∑
i=1

(rt−i − r∗t−i) + σ1ε1t (8a)

πt = B(L)πt−1 + bI(π
I
t − πt) + bo(π

o
t−1 − πt−1) + byỹt−1 + σ2ε2t (8b)

∆zt = σ3ε3t (8c)

∆y∗t = gt−1 + σ4ε4t (8d)

∆gt = σ5ε5t (8e)

r∗t = c4gt + zt, (8f)

where ỹt = (yt − y∗t ) is the output gap, yt is (100 times the log of real) GDP, y∗t is potential

GDP, rt is a real interest rate, r∗t is the neutral real rate, πt, π I
t and πo

t are various measures

of inflation, and B(L) is a lag polynomial to capture the dynamics in inflation. There are

evolving processes for the trend growth of GDP gt, and ‘other determinants’ zt, which affect

r∗t . There are a total of five shocks ηit = σiεit, ∀i = 1, . . . , 5, with standard deviations {σi}5
i=1,

and the error terms {εit}5
i=1 have unit variances as before. All relevant model parameters

are taken from LW and are documented in the GitHub repository associated with this paper.

While the focus of LW is on estimating r∗t defined in (8f), trend growth gt is also estimated.

In order to assess recoverability as outlined in Section 2.3, we write LW’s model in (8)

in shock recovery SSF so that all observables are contained in Zt on the LHS of (1), and all

shocks and remaining latent states are collected in the state vector Xt. Doing this yields the

measurement equations:

Z1t = y∗t − α1y∗t−1 − α2y∗t−2 +
ar

2

2∑
i=1

r∗t−i + σ1ε1t, (9)

Z2t = byy∗t−1 + σ2ε2t, (10)
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and the relevant state dynamics are given by:

∆y∗t = gt−1 + σ4ε4t (11)

∆gt = σ5ε5t (12)

∆r∗t = c4σ5ε5t + σ3ε3t. (13)

The state vector of the shock recovery SSF consists of:

Xt =
[
y∗t y∗t−1 gt r∗t r∗t−1 ε1t ε2t ε3t ε4t ε5t

]′ . (14)

The LHS observable part of Zt is given by:

yt − α1yt−1 − α2yt−2 +
ar

2

2∑
i=1

rt−i = Z1t (15)

πt − B(L)πt−1 − bI(π
I
t − πt)− bo(π

o
t−1 − πt−1)− byyt−1 = Z2t. (16)

The full SSF corresponding to (1) and (2) for LW’s model can thus be written as:[
Z1t
Z2t

]
︸ ︷︷ ︸

Zt

=

[
1 0 0 0 0 σ1 0 0 0 0
0 −b3 0 0 0 0 σ2 0 0 0

]
︸ ︷︷ ︸

D1

Xt

+

[
−a1 −a2 0 − a3

2 − a3
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

]
︸ ︷︷ ︸

D2

Xt−1 + 02×5︸︷︷︸
R


ε1t
ε2t
ε3t
ε4t
ε5t


︸ ︷︷ ︸

εt

(17a)



y∗t
y∗t−1

gt
r∗t

r∗t−1
ε1t
ε2t
ε3t
ε4t
ε5t


︸ ︷︷ ︸

Xt

=



1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

A



y∗t−1
y∗t−2
gt−1
r∗t−1
r∗t−2
ε1t−1
ε2t−1
ε3t−1
ε4t−1
ε5t−1


︸ ︷︷ ︸

Xt−1

+



0 0 0 σ4 0
0 0 0 0 0
0 0 0 0 σ5
0 0 σ3 0 4cσ5
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

Q


ε1t
ε2t
ε3t
ε4t
ε5t


︸ ︷︷ ︸

εt

(17b)

Note here that the SSF corresponding to LW’s structural model has five shocks, but only

two observed variables. This means that it will not be possible to recover more than two unique

shocks from this model. These could be linear combinations of all five shocks in the model,
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rather than any particular two of the five shocks in LW’s model.

Given the SSF, we can follow the same process as outlined in Section 2.3 to determine

which shocks are likely to be recoverable and which ones are not. For LW’s model, the

following recovery measures corresponding to the five shocks {εit}5
i=1 are obtained:

Table 1: Recovery measures: Laubach and Williams (2003) shocks

Shocks: ε1t(ỹt) ε2t(πt) ε3t(zt) ε4t(y∗t ) ε5t(gt)

diag(P∗
t|T) 0.6952 0.0146 0.9749 0.3353 0.9800

Corr(εt, ETεt) 0.5521 0.9927 0.1585 0.8153 0.1415

The cost push shock, ε2t, is recoverable. However, neither the ‘other determinants’ shock

ε3t nor the trend growth shock ε5t can be recovered. Note from equation (13) that these

two shocks define the neutral rate. Therefore, the neutral rate itself will not be recoverable

from this model. In fact, the (population) correlation between the smoothed estimate of

the change in the neutral real rate and its true value is only 0.1764.11 This, we believe,

is useful information for any policymaker considering to use this model, which is distinct

from confidence or highest posterior density intervals of the neutral rate, for example, as it

assesses how the model would perform in the best possible circumstances. Figure 1 shows

a graphical representation of recoverability of each of the shocks and ∆r∗t in LW’s model.

A direct consequence of the lack of recoverability in LW’s model is that the smoothed

shocks of the ∆y∗t , ∆gt and ∆zt equations given in (8d), (8e) and (8c) are related through an

identity. That is, defining ηit = σiεit, this identity involves the smoothed estimates of the

trend growth shock ∆ETη5t, the ‘other determinants’ shock ∆ETη3t, and the trend shock ETη4t:

∆ETη5t = 0.0266∆ETη3t − 0.0018ETη4t. (18)

Moreover, from the smoothed states we can further establish the following two identities:12

ET∆r∗t = 4cETη5t + ETη3t, (19)

11The correlation is found through simulation and application of the Kalman filter and smoother to the sim-
ulated data. Alternatively, one can expand the SSF in (17) to include ∆r∗t at the end of the state vector as an
extra state variable and compute the same recovery measures as before. Since the variance of ∆r∗t is not going
to be unity, P∗

t|T needs to be normalized by Var(∆r∗t ) for the P∗
t|T to be comparable to the remaining entries. The

normalized P∗
t|T for ∆r∗t is 0.9733.

12η5t has been multiplied by 4, reflecting that gt is annualized.
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Figure 1: Comparison of the true shocks and change in the neutral real rate and their Kalman
Smoothed estimates in Laubach and Williams (2003).

and

ET∆r∗t = ET∆r∗t−1 − 0.1388ETη1t − 0.0008ETη2t + 0.0196ETη4t (20)
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+ 0.0665ETη1t−1 − 0.0272ETη4t−1.

These show that whatever ET∆r∗t is measuring can be equally well explained by either (19)

or (20). The latter involves a dynamic combination of smoothed demand, technology and

Phillips curve shocks, while the former has smoothed values of the shocks meant to explain

the neutral real rate. Consequently, the presence of a short system creates interpretation

difficulties. LW’s estimated model cannot distinguish which shocks are driving r∗t .

Holston, Laubach and Williams (2017, HLW) provide an updated version of the origi-

nal LW model using a somewhat different formulation of the Phillips curve equation (8b)

estimated over a longer sample period, and one might ask whether recoverability in HLW

improves over LW. Examining the recovery measures in Table 2 clearly this is not the case.

The two shocks driving the natural rate again are not recoverable. Computing the correla-

tion between the true model implied change and the estimated change in the natural rate

(ET∆r∗t ) yields a value of 0.1412 from HLW’s model.

Table 2: Recovery measures: Holston, Laubach and Williams (2017) shocks

Shocks: ε1t(ỹt) ε2t(πt) ε3t(zt) ε4t(y∗t ) ε5t(gt)

diag(P∗
t|T) 0.6979 0.0178 0.9913 0.3183 0.9746

Corr(εt, ETεt) 0.5464 0.9907 0.0928 0.8280 0.1585

Identities of the form in (18), (19), and (20) also exist for HLW’s model, and once again

provide two possible representations of what is driving changes in the neutral rate.13

Due to the impact of COVID-19 on the variables in HLW’s model, Holston et al. (2023)

modify the specification in HLW by allowing potential output to be impacted by govern-

ment policy responses, which they measure using the Oxford policy tracker (Hale et al.,

2021), by allowing the variance of the shocks to temporarily increase (the approach is simi-

lar to Lenza and Primiceri, 2022). Since the modified model has an additional parameter κ

that determines how large the step increase is in the variance, in Table 3 we provide recovery

13They are

∆ETη5t = 0.1654∆ETη3t − 0.0028ETη4t,
ET∆r∗t = 4ETη5t + ETη3t,

and

ET∆r∗t = ET∆r∗t−1 − 0.0381ETη1t − 0.0003ETη2t − 0.0044ETη4t

+ 0.0180ETη1t−1 − 0.0068ETη4t−1.
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measures for two different κ values; a high value of κ = 9.033 and a low value of κ = 1.676,

corresponding to the time periods 2020:Q2 − Q4 and 2022, respectively.

Table 3: Recovery measures: Holston, Laubach and Williams (2023) shocks

Shocks: ε1t(ỹt) ε2t(πt) ε3t(zt) ε4t(y∗t ) ε5t(gt)

κ = 9.033

diag(P∗
t|T) 0.0242 0.0034 0.9993 0.9826 0.9905

Corr(εt, ETεt) 0.9877 0.9983 0.0244 0.1343 0.0965

κ = 1.676

diag(P∗
t|T) 0.3259 0.0106 0.9963 0.6915 0.9756

Corr(εt, ETεt) 0.8189 0.9945 0.0596 0.5595 0.1549

As in the previous versions of the LW model, the two shocks that make up the natural

rate cannot be recovered. In the κ = 9.033 high parameter setting, the correlation between

the true and estimated shocks is less than 10%, in fact, as low as 2.5% for the shocks of ‘other

factor’ zt. Recovery appears to be concentrated on the output gap and inflation equation

shocks, while the shock to y∗t is not recoverable. In the low κ = 1.676 parameter setting, the

degree of recovery of the trend shock y∗t increases at the expense of the output gap shock,

which decreases. The natural rate shocks remain unrecoverable. The correlation between

true and estimated ∆r∗t are, respectively, 0.0819 and 0.1396.14

In summary, in all three variants of the Laubach and Williams model the natural rate r∗t
cannot be recovered from the data. This message can be easily communicated to policymak-

ers using the correlation coefficient between the true model implied value and the Kalman

smoother estimate from the data. This is never above 0.1764, and can be as low as 0.0819.

3.2 Recovering the Neutral Real Rate and the NAIRU - McCririck and

Rees (2017)

McCririck and Rees’ model (2017, MR) is effectively an extension of LW and adds an equa-

tion for Okun’s law to enable the determination of a number of macroeconomic stars. The

stars of interest are: growth in potential GDP, the NAIRU, and the neutral real interest rate,

14Identities of the form in (18), (19), and (20) exist again also for the post COVID-19 HLW (2023) model.
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denoted by gt, u∗
t and r∗t , respectively. The model takes the form:15

ỹt = α1ỹt−1 + α2ỹt−2 −
ar

2

2∑
i=1

(rt−i − r∗t−i) + σ1ε1t (21)

πt = (1 − β1)π
e
t +

β1

3

3∑
i=1

πt−i + β2(ut−1 − u∗
t−1) + σ2ε2t (22)

∆zt = σ3ε3t, (23)

∆y∗t = gt + σ4ε4t (24)

∆gt = σ5ε5t (25)

∆u∗
t = σ6ε6t (26)

ut = u∗
t + β(.4ỹt + .3ỹt−1 + .2ỹt−2 + .1ỹt−3) + σ7ε7t (27)

r∗t = 4gt + zt, (28)

where ut is the unemployment rate, u∗
t the NAIRU, πe

t is measured expected inflation, and

the remaining variables are as before in LW.

In MR’s model, there are three observables — output growth, inflation and the unem-

ployment rate — and seven shocks. Thus, the full set of seven shocks will not be recover-

able. Writing their model in a SSF as before, and using the posterior means reported in Table

A2 of their paper, we obtain the following recovery measures shown in Table 4 below:

Table 4: Recovery measures: McCririck and Rees (2017) shocks

Shocks: ε1t(ỹt) ε2t(πt) ε3t(zt) ε4t(y∗t ) ε5t(gt) ε6t(u∗
t ) ε7t(ut)

diag(P∗
t|T) 0.4621 0.0309 0.9740 0.1690 0.9528 0.9691 0.4421

Corr(εt, ETεt) 0.7335 0.9846 0.1637 0.9126 0.2148 0.1772 0.7500

So, while there are issues in recovering the NAIRU shock ε6t, the biggest concern is still

the recovery of the neutral rate, since the entries corresponding to the two shocks that define

r∗t (ε3t and ε5t) still strongly indicate a lack of recoverability. A dynamic correlation between

the smoothed estimates of ε5t and several of the other shocks is also apparent. Therefore,

giving these shocks macroeconomic names or labels, and understanding what is driving the

estimates of r∗t , is difficult. The correlation between true and estimated change in the natural

rate remains low at 0.1907.
15Note that in MR, gt rather than gt−1 is in the potential GDP growth equation, and the sign of the interest
rate variables in the IS equation has changed. Also, for ease of comparability, we use the shock numbering
{σiεit}7

i=1 as in LW, rather than the labelling used in MR.
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3.3 Endogenous interest rates: can this change the outcome?

The ability of LW’s model and its variants to recover the neutral real rate appears to be

extremely limited. Prompted by this, it is natural to consider if the model could be modified

to address this. One possibility is to introduce more observed variables into the system. One

issue is that the catch-all nature of one of the shocks driving the neutral real rate, zt, makes

this rather non trivial. Another possibility is to modify the structure of the model. In the LW

model, the policy rate was assumed to be exogenous, i.e., there was no equation, such as a

standard Taylor rule, to explain its evolution. As Pagan and Wickens (2022) observed, this

means that the LW model has some undesirable features.

To see some of these undesirable features, it is useful to consider the time-series proper-

ties of the series implied by LW’s model. By definition, r∗t is an integrated process of order

one, I(1) henceforth, since both gt and zt are I(1) processes. Because there is no equation

for rt in LW, there is no mechanism in place to ensure that r∗t and rt co-integrate. If they do

not co-integrate, then both the output gap, ỹt, and inflation πt will be I(1). Since the goal of

many central banks is to stabilize inflation, it is difficult to see how this can be achieved in

a model where inflation is allowed to follow an I(1) process, and there is no control rule to

make it I(0). A simple way to avoid this issue is to add a monetary rule to the LW model.

We can examine the effect of adding a policy rule within the MR model. As the latter was

utilized in the MARTIN policy model of the Reserve Bank Australia (see Ballantyne et al.,

2020), it is natural to adopt their nominal interest rate rule, which implies for the real rate:

rt = .7 (rt−1 − ∆πt) + .3 [r∗t + (πt − π̄)− 2(ut − u∗
t )]− ∆2ut + 1.19ε8t, (29)

where π̄ denotes the inflation target. It is important to note here that adding (29) to the base-

line MR model adds both an additional observed variable and also an additional (monetary

policy) shock, ε8t.

With this extended model, there are now four observed variables and eight shocks, im-

plying once again a short system, and so not all shocks will be recoverable. Computing

recovery diagnostics for the extended MR model with a policy reaction function yields the

results shown in Table 5 below.

Table 5: Recovery diagnostics: McCririck and Rees (2017) with MP rule shocks

Shocks: ε1t(ỹt) ε2t(πt) ε3t(zt) ε4t(y∗t ) ε5t(gt) ε6t(u∗
t ) ε7t(ut) ε8t(rt)

diag(P∗
t|T) 0.4521 0.0243 0.9550 0.1682 0.9487 0.9547 0.4421 0.0549

Corr(εt, ETεt) 0.7423 0.9876 0.2112 0.9109 0.2266 0.2167 0.7456 0.9727
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Focusing on the neutral real rate relevant entries under headings ε3t(zt) and ε5t(gt) in Ta-

ble 5, the diag(P∗
t|T) values of 0.9550 and 0.9487 with corresponding population correlations

of 0.2112, and 0.2266, respectively, are again evidence of a lack of recoverability of the neu-

tral rate. In fact, these are little changed from those in Table 4. Thus, adding a policy rule to

LW type models does not alter our finding of no recoverability.

Of course, this is only one possible modification to LW style models. Others may be more

successful. Knowledge of the limited ability of these models to recover the neutral real rate

should prompt researchers to consider alternatives.

4 Star Wars: Is there a Better Way to Recover Stars?

Even though one cannot recover stars from the models described above, perhaps one can get

closer by using a different structural representation or filter. In the context of our metaphor

of stars being used as a guide in a journey, it might be possible to think of this strategy as

devising a better star map in order to get a more precise view of the location of the stars. To

investigate this, we consider in the next sub-section a model recently proposed for estimat-

ing neutral real rates by Schmitt-Grohé and Uribe (2022).

Rather than use a different structural model or map, one might get a clearer view of

the stars with a different telescope. In particular one might define the star variable via a

Beveridge-Nelson (1981, BN) decomposition, and we consider two applications of this ap-

proach. The first was recently advocated by Morley, Tran and Wong (MTW, 2023), and a

second by Lubik and Matthes (2015, LM). The latter employ a finite-horizon version of the

BN decomposition linked to a TVP VAR model for variables related to the star.

4.1 New Structural Models - Schmitt-Grohé and Uribe (2022) and (2024)

Schmitt-Grohe and Uribé (2022, SGU) present a new structural model for estimating the neu-

tral real rate; a closely related model is used in Schmitt-Grohé and Uribe (2024) for finding

trend inflation. It assumes that the log level of per capita output yt is driven by two per-

manent stochastic components, xt and xr
t , which represent technology and non-monetary

factors affecting the real interest rate. Inflation πt is I(1) and its permanent component is

the nominal inflation target. Lastly, the nominal interest rate is I(1), and it is driven by two

permanent components — the inflation target and the non-monetary real rate permanent

component. This model is related to Uribe’s (2022) model on the Neo-Fisher effect in which

inflation and the nominal interest rate co-integrate with a permanent monetary shock (i.e.,

the inflation target). Denoting the transitory (gap) components in these variables with a
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tilde, these can be expressed as:

ỹt = yt − xt − δxr
t

π̃t = πt − xm
t

ı̃t = it − (1 + α)xm
t − xr

t .

The neutral real rate is taken to be a combination of the permanent components driving

inflation, xm
t , and xr

t , although in their final model they set α = 0 producing r∗t = xr
t . This

is different to LW’s natural rate specification in equation (8f), which takes the form r∗t =

c4gt + zt. In LW, r∗t responds to growth in potential GDP (gt) coming from technology, as

well as to one ”other” real non-monetary shock (zt). In contrast, the SGU specification has

no role for technology shocks to affect r∗t .

To analyze the properties of SGU’s model, we define Φt =
[

ỹt π̃t ı̃t
]′ and ξt =[

∆xm
t τm

t ∆xt τt ∆xr
t
]′, where τm

t and τt are stationary monetary and real shocks. Then

the dynamics for the gaps Φt are described by the following Vector AutoRegression (VAR)

equation:

Φt = BΦt−1 + Cξt,

while the observation equations are:

∆yt = ∆ỹt + ∆xt + δ∆xr
t + σyε

y
t (30)

∆πt = ∆π̃t + ∆xm
t + σπεπ

t (31)

∆it = ∆ı̃t + (1 + α)∆xm
t + ∆xr

t + σiε
i
t, (32)

where ε
y
t , επ

t and εi
t are measurement errors. As the observed variables are first differences,

these measurement error shocks will have a permanent impact. Notice that even without

the measurement errors the system is short, having three observables and five shocks.

The shocks are assumed to evolve as AR(1) processes. Of importance here is:

∆xr
t = ρ5∆xr

t−1 + σ5ε5t. (33)

SGU estimate the system parameters by Bayesian methods. Some of the entries in C are

fixed at values needed for identification of the parameters.16

It should be clear that, to recover r∗t , one needs to be able to recover ε5t in (33). Including

the measurement errors, there are eight shocks and three observed variables, which means

16We thank Martı́n Uribe for providing the posterior mean parameter estimates (see the GitHub repository).
We put α = 0 as we did not receive a posterior mean for it; the posterior median reported is very close to 0.
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not all of the shocks can be recovered. From Table 6 it appears that only the neutral real rate

shock ε5t might be recovered, as the value of around .16 could be viewed as close to zero.

Table 6: Recovery measures: Schmitt-Grohé and Uribe (2022) shocks

Shocks: ε1t ε2t ε3t ε4t ε5t ε
y
t επ

t εi
t

diag(P∗
t|T) 0.3949 0.7873 0.6211 0.5441 0.1596 0.9163 0.7457 0.8310

Corr(εt, ETεt) 0.7779 0.4612 0.6155 0.6752 0.9168 0.2893 0.5043 0.4111

One might ask here how recovery of the real rate shock changes with the sensitivity of

the output gap to the real rate shock. This is captured by the parameter δ in (30) as its value

determines how important technology shocks are relative to ”other” real shocks.17 At the

extreme, when δ = 0, a much higher value for P∗
t|T of .83 is found for ε5t, indicating that the

shock cannot be recovered. This points to a fundamental role for δ in the recovery of this

shock in this model. To examine this more closely, take the equation for the output gap:

ỹt = b11ỹt−1 + b12π̃t−1 + b13 ı̃t−1 + c11∆xm
t

+ c13∆xt + c14zt + c15∆xr
t .

There is a measurement equation involving observed output growth ∆yt that is given by:

∆yt = (b11 − 1)ỹt−1 + b12π̃t−1 + b13 ı̃t−1 + c11∆xm
t

+ c13∆xt + c14zt + (c15 + δ)∆xr
t + σyε

y
t

= ηt + (c15 + δ)∆xr
t .

Suppose now that ρ5 = 0 in equation (33). Then, ηt is uncorrelated with ∆xr
t . Moreover,

δ does not affect the variance of this latter variable. Hence the variance of ∆yt would vary

directly with δ, once all other parameters are set (e.g. to the posterior mean). This gives

rise to two interesting observations. First, the posterior mean of c15 is very small (−.0051).

If it was zero, then the model variance of ∆yt will depend on δ2. This may explain why

SGU found that there was some evidence of counter-intuitive negative values for δ. Indeed,

setting δ = 8.3292 (the posterior mean) produces standard deviations of ∆yt, ∆pt and ∆it of

4.67, 1.63 and 1.32, whereas putting δ = −8.3292 we similarly get 4.65, 1.63 and 1.32.

Secondly, the fraction of the variance of ∆yt explained by the real rate shock ε5t will rise

as δ rises. Thus, when δ = 8.3292 we find that nearly 80% of the variation in GDP growth is

due to neutral real rate shocks. This appears to be rather high, since these are shocks that,

17In SGU’s paper, the posterior median of δ is 8.6, which is very similar to its mean of 8.3292 which we use.
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as Schmitt-Grohé and Uribe (2022, p. 4) write: “could stem from, for example, secular variations

in demographic variables, exogenous changes in subjective discount rates, or in other factors deter-

mining the domestic or external willingness to save”. To reduce this influence it is necessary to

reduce the magnitude of δ. Indeed, if δ = 2, holding all other parameters unchanged, the

real neutral rate shocks explain 18% of output growth and, with that value, the diag(P∗
t|T)

entry for the fifth shock ε5t is .73, indicating that it cannot be recovered. Clearly, the issue

here is whether we have strong opinions about the likelihood of these ”other” real shocks

driving so much of growth, while technology determines so little, as δ = 8.3292 implies.

Why does one get such a high δ estimate from the model? Fundamentally, δ is a free

parameter that enables the model to better match the output growth data. To see this, note

that the standard deviation of the GDP growth data is 4.89. Setting δ = 8.3292 leads to a

model based value of the standard deviation of GDP of 4.67, which matches the data well.

If instead, δ = 2, there is a standard deviation of GDP growth of 2.37 — a poor match. As

δ rises, a larger proportion of output growth is accounted for by the real neutral rate shock,

making recovery of that shock from the data easier.

4.2 A Different Telescope - The Beveridge-Nelson Filter

The Beveridge-Nelson (BN) decomposition has been used in several ways to estimate stars.

Morley et al. (2023, MTW) is a recent approach. They define the star variable as the perma-

nent component of a series found with the BN decomposition. This is a sensible proposal,

but there are possible short system issues which we investigate in the first sub-section that

follows below. An earlier proposal using BN was Lubik and Matthes (2015, LM) who esti-

mate a simple TVP-VAR for three variables to find the neutral real rate. They deviate from

the standard BN decomposition by working with a time horizon of five years, rather than

an infinite one, when defining the permanent component as the ‘long-run’ forecast. Again,

there are short system issues that we discuss.

4.2.1 The MTW (2023) BN Approach

MTW’s strategy consists of three steps to estimate the star variable of interest, which is the

real neutral rate r∗t . Unlike other studies, MTW treat the real rate of interest rt as latent and

define the observable real rate as r̃t = rt + vm1t, where vm1t is an I(0) measurement error,

uncorrelated with rt.18 There are other observable variables in the system. To briefly sum-

marize the MTW approach, we use the data generating process of their simulation example

18It is unclear why the measurement error is on the level of rt, rather than on the growth rate ∆rt, since it
would become less and less important as the sample size grows. Nonetheless, the same analysis that we
provide below would still apply if it was on ∆rt.
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in Section 3.3, which contains one additional observable variable x̃t that is similarly related

to xt via measurement error vm2t.

First, an assumption is made about the behaviour of the latent variables rt and xt. In

their simulations, these variables follow a VAR(1) of the form:[
∆rt
∆xt

]
︸ ︷︷ ︸

∆zt

=

[
0 −.05
0 .95

]
︸ ︷︷ ︸

A

[
∆rt−1
∆xt−1

]
︸ ︷︷ ︸

∆zt−1

+

[
v1t
v2t

]
︸ ︷︷ ︸

vt

(34)

where

[
v1t
v2t

]
︸ ︷︷ ︸

vt

∼ N

([
0
0

]
,
[

.1125 .1
.1 .1

]
︸ ︷︷ ︸

V

)
. (35)

The BN definition of the permanent components corresponding to (34), denoted with a su-

perscript p, is given by:

∆zp
t = (I − A)−1vt, (36)

yielding the individual equations:

∆rp
t = v1t − v2t (37a)

∆xp
t = 20v2t. (37b)

The relations in (37) are the permanent components of the (multivariate) BN decomposition

of ∆zt, where ∆rp
t in (37a) is the BN estimate of ∆r∗t .

In their second step, because r̃t and x̃t are observables and rt and xt are not, all the vari-

ables are connected by measurement errors specified as vmt =
√

0.05 vt, where vt is defined

in (35). This leads to the system:

∆r̃t = ∆rt + ∆vm1t

∆x̃t = ∆xt + ∆vm2t,

which implies

∆z̃t = ∆zt + ∆vmt

= (I − AL)−1vt + ∆vmt.
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Consequently, the BN estimate of the permanent component in terms of observables ∆z̃t is:

∆z̃p
t = (I − A)−1vt. (38)

Comparing (38) to (36), one can see that the shocks driving the permanent components of z̃t

and zt are the same.

MTW assume that the researcher mistakenly lets ∆r̃t and ∆x̃t follow a VAR(1) process, as

was true of ∆rt and ∆xt, when getting a preliminary BN estimate of the permanent compo-

nent r∗t .19 This ‘preliminary BN’ estimate ∆r̃∗t is given by:

∆r̃∗t = 1.06ṽ1t − .949ṽ2t. (39)

Note that there is serial correlation in ∆r̃∗t (its first order auto-correlation coefficient is −.15).

Finally, since ∆r∗t = v1t − v2t (the permanent component in (37a) from the VAR(1) speci-

fication) is a white noise process, and ∆r̃∗t in (39) is not, MTW proceed to find an estimator

of ∆r∗t in the third step which has that property. They describe this as ‘robust to misspeci-

fication’, where the misspecification term refers to the presence of measurement error. To

produce their ‘robust’ estimator of ∆r∗t (∆r̂∗t ), they assume an AutoRegressive Moving Aver-

age (ARMA) process for ∆r̃∗t , and then derive the new estimate ∆r̂∗t from the BN solution for

that process. Fitting an ARMA(1, 2) model to ∆r̃∗t gives:

∆r̃∗t = .377∆r̃∗t−1 + ωt − .620ωt−1 + .071ωt−2,

where ωt is white noise. MTW then define the robust estimate of the BN permanent com-

ponent as ∆r̂∗t = 1−.620+.071
1−.377 ω̂t = .72ω̂t, and its standard deviation is .72 × .152 = .11. By

construction, this approach produces an estimate with the property that ∆r̂∗t is white noise.

However, ∆r̂∗t is not ∆r∗t . The correct BN permanent shock is v1t − v2t, which has a standard

deviation of .11. Regressing this against ω̂t gives a recovery measure R2 of .61. This illus-

trates that, while MTW is more successful than Laubach and Williams (2003) and its related

approaches, one cannot fully recover the actual permanent shock with this strategy.

For comparison, a regression of the correct BN permanent shock against the preliminary

value ∆r̃∗t yields an R2 of .58, and this preliminary value is more volatile (its standard devia-

tion is .157). This highlights that their correction improves the estimate of the variance of the

correct BN permanent shock. However, its robustness is limited to producing an estimate

for the change in the real neutral rate which is white noise and it does not fully recover ∆r∗t .

19The VAR(1) coefficient estimates are inconsistent since ∆z̃t is a Vector Autoregressive Moving Average
(VARMA) process, and not a VAR. To find the large sample estimates of the VAR(1) coefficients, we simu-
late 50,000 observations from their VARMA model and fit a VAR(1) to the simulated data.
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To understand why this is the case it is useful to determine what drives ω̂t. Regressing ω̂t

against current and ten lags of v1t, v2t, vm1t and vm2t gives an R2 = .9998, i.e., this virtually

is an identity. When the terms vm1t and vm2t are excluded, the R2 drops to .7, indicating that

the measurement errors are very informative in the computation of ω̂t, and therefore the

robust estimate, in contrast to the true BN decomposition. The importance of measurement

errors to the robust estimate ∆r∗t contributes to its recovery R2 being .61.

4.2.2 Recovering Stars using Time-Varying Parameter Models

Another way the BN decomposition has been used to estimate stars is to couple it with a

Time-Varying Parameter (TVP) model. As an example, consider the study by Lubik and

Matthes (2015, LM) who estimate a simple TVP-VAR for three variables: the growth rate

of real GDP, the PCE inflation rate, and the same real interest rate as in LW (2003). This

measure is regularly updated and published by the Federal Reserve Bank of Richmond.20

Their proposal is to measure the natural real rate of interest as the (conditional) long-horizon

forecast of the observed real rate, so it is a variant of the BN definition of the permanent

component. In their paper, the chosen time horizon is five years.

To illustrate the issues with such an approach, consider a simpler TVP model for a single

equation only, the real interest rate, consisting of:

rt = ρtrt−1 + σ1ε1t (40)

∆ρt = σ2ε2t, (41)

where ε1t and ε2t are mutually and serially uncorrelated, with zero mean and unit variance.

Suppose, for simplicity that we define r∗t as the prediction of rt two periods ahead (instead

of the five used in LM), that is, r∗t = Etrt+2. Then, using (40) and (41):

r∗t = Et(ρt+2rt+1 + σ1ε1t+2)

= Et[(ρt + σ2ε2t+2 + σ2ε2t+1)rt+1 + σ1ε1t+2]

= Et[(ρt + σ2ε2t+2 + σ2ε2t+1)(ρt+1rt + σ1ε1t+1)

= Et[(ρt + σ2ε2t+2 + σ2ε2t+1)(ρt + σ2ε2t+1)rt)]

= Et(ρ
2
t + σ2

2 )rt. (42)

Now, in the above, all random variables observed at time t are known, but future ones are

unknown and are replaced by their unconditional means of zero, i.e., Et(ε1t+i) = 0, ∀i > 0.

20See https://www.richmondfed.org/research/national_economy/natural_rate_interest.
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It then needs to be recognized that, while rt is known, ρt is not, and the expectation must be

conditional on the data. The relation in (42) then leads to a star type of estimate of the real

rate r∗t having the form:

r∗t = rtEt(ρ
2
t ) + σ2

2 rt. (43)

The problem then is that Et(ρ2
t ) is not computed by the Kalman filter. To proceed, Lubik and

Matthes (2015) did something different. For this case their approach would be to measure

r∗t as rtEt(ρt+2), and not rtEt(ρ2
t ) + σ2

2 rt in (43), as implied by the TVP model.

More generally, typically in a TVP VAR there will be shocks that would drive the struc-

tural equations and shocks that determine the evolution of the TVPs. So, as discussed in

Pagan and Robinson (2022), the system is short. Consequently, there will be linear relations

between at least some of the filtered quantities. The extent of which this impedes the recov-

ery of the star variable will vary across TVP models, pointing to a need for it to be reported.

5 Stochastic Volatility Can Obscure the Stars

We now turn to a recent feature of many modern macroeconomic models whose potential to

impede shock recovery, and therefore obscure the stars, does not appear to be appreciated;

namely, Stochastic Volatility (SV).21 Initially SV was included in models used to summarize

the data; a prominent macroeconomic example is the univariate model of U.S. inflation by

Stock and Watson (2007). More recently, SV has increasingly been included in models which

interpret the economy through shock estimates and impulse responses; for example, the

SVAR of Mumtaz and Zanetti (2013) is a prominent case. An example of the inclusion of

SV in models intended to estimate stars is Beyer and Milivojevic (2023), who estimate the

neutral real rate for 50 countries.

To see how recovery issues may materialize, consider the following simple example.

Suppose that there is a single variable and it has conditional volatility that is specified to

follow an SV process. This produces the following model:

yt = B1yt−1 + exp{.5ht}εt (44a)

ht = µ + βht−1 + ωt. (44b)

Although estimation of the parameters can be complex and is important in practice, as before

21A second recent feature often included are news shocks, following Beaudry and Portier (2004 and 2006). The
consequences of news shocks for shock recovery are discussed in the working paper version of this paper.
Suffice it to say that the systems featuring them are short.
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we assume we have parameter estimates or know their true values. Then, define:

ζt = yt − B1yt−1

⇔ ζ2
t = exp{ht}ε2

t ,

so that

log(ζ2
t ) = ht + log(ε2

t )

= µ + βht−1 + ωt + log(ε2
t ). (45)

Computing smoothed shocks gives an SSF with equations:

log(ζ2
t )

D = µ + βETht−1 + ETωt + ET log(ε2
t ) (46)

ETht = µ + βETht−1 + ETωt. (47)

Because there is only one observable log(ζ2
t ) in (44), the system is short and both the shocks

εt and ωt cannot be recovered.22 Note here again that it has been assumed that parameters

are either known or estimates of them are available. The SSF has to hold — it is an implication

of the SV model. The inclusion of SV therefore can be problematic when the model is used to

interpret, rather than summarize, the data with the shocks, as occurs when estimating stars.

Is there an alternative to the SV specification? Yes, of course. Other major classes of

models for capturing conditional volatility, namely (E)GARCH (Bollerslev, 1986, and Nel-

son, 1991), are not short and are well capable of capturing the same type of time varying

volatility behaviour in macroeconomic variables as the SV model. For example, one might

use an EGARCH model taking the form:

yt = B1yt−1 + exp{.5ht}εt

ht = µ + βht−1 + αε2
t−1,

and avoid the recoverability issues introduced by a SV process.23

22This scenario is exactly the same as the one in Section 2.2, albeit with the second shock being log transformed.
23Hamilton et al. (2016) estimate a long-run world real rate drawing on individual rolling ARCH(2) models of
the real rate for a range of countries.
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6 Estimating Stars Without Short Systems: Smooth-Transition

Models

A common feature of many models intended to estimate stars is that the stars are modelled

as evolving via an exogenous non-stationary process, or as a function of several such pro-

cesses. This approach is often motivated as being agnostic, allowing shifts in the star to

occur without a stance being taken on either when they took place or how the star variable

changed between these shifts. Instead, it is constantly changing over time. However, as

shown above, this flexibility can limit the ability to recover the stars and hence the interpre-

tation of what drives them.

Okimoto (2019), is an example of an alternative approach to modelling a star that does

not result in a short system by using a smooth-transition model (see van Dijk et al., 2002

for a survey). These allow for a finite number of changes in the star. Okimoto (2019), uses

a smooth transition model to describe the evolution of the star variable trend inflation π∗
t .

With a sample of T observations, the aim of this approach is to capture the evolution of the

star as undergoing a smooth transition from the value at the beginning of the sample µ1 to

that at the end µ2 using a deterministic function that depends on (t/T).24 There are many

such functions that could be applied, one of which is the exponential function employed by

Okimoto (2019):

π∗
t = µ1 + G(st; c, γ)(µ2 − µ1) (48)

G(st; c, γ) =
1

1 + exp(−γ(st − c))
, γ > 0

st ≡
t
T

.

Smooth-transition models have been used to model stars other than trend inflation. For

example, Murphy (2020) does so for the NAIRU in the context of a large macroeconomic

model of Australia, albeit with a different transition function G(·) than in (48); Lye and

McDonald (2021) also has elements of this. Recently Gao et al. (2024) have proposed a

related approach for TVP structural VAR models.

We believe that further analysis of this approach to modelling star variables such as

through the evaluation of their real-time reliability — akin to Orphanides and Van Nor-

den (2002) for unobserved-component models — is warranted in order to better understand

their potential usefulness for policy.

24One could allow for knot points in the sample as well, just as one does with spline functions.
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7 Conclusion

Stars are frequently cited in speeches by central bank officials and the financial press when

addressing the appropriateness of the current policy stance. Moreover, estimates of stars are

routinely published by central banks and organizations such as the OECD in their Economic

Outlook report. Recently, authors from the World Bank have produced an extensive cross-

country database of stars such as the growth rate of potential output (see Kilic Celik et al.,

2023). In general, substantial resources are devoted to estimating stars, which highlights

their importance in the conduct of macroeconomic policies.

Federal Reserve Chairman Jerome H. Powell once commented that conventional wisdom

is that monetary policy involves navigating by stars like ships of the past, but shifting stars

makes that challenging (Powell, 2018). In that regard, Sablik (2018, p. 3) records that New

York Fed President John C. Williams (one of the authors of the LW model) bemoaned the

challenges of using the natural real rate as a guide for policy by saying: ‘As we have gotten

closer to the range of estimates of neutral what appeared to be a bright point of light is really a fuzzy

blur’. These comments illustrate some of the issues arising that relate to parameter uncer-

tainty, shifts in stars, and wide confidence intervals surrounding estimates of stars. They

significantly complicate the conduct of macroeconomic policy. And they are well known.

The point of this article is more fundamental. Drawing on the recent theoretical literature

on shock recovery, we simply ask whether the models used to estimate stars can in fact

recover the true star from the observed data. This would seem to be a minimal desirable

property of any model. We address this question in the most favorable setting conceivable,

namely, when the models used to measure the star variables are correctly specified, all their

parameters are known, and an infinite amount of the observed series are available. The

answer to this question is that the ability to recover stars varies considerably across the

models. In the workhorse Laubach and Williams model, for example, it is not possible to

recover the main star variable of interest, r∗t .

Understanding the limitations of models which play a critical role in the conduct of

macroeconomic policy is important. Whether a model can recover the variable it is intended

to measure is paramount, yet it is not routinely discussed. Just as presenting confidence

or highest posterior density intervals around stars is standard practice for demonstrating

the statistical uncertainty surrounding the estimates, the extent of recoverability of the star

variable also needs to become standard disclosure information. We have shown how this

can be communicated simply as a correlation between the estimated (first difference) in the

star variable and its true population value, which is easily calculated using the Kalman filter

and smoother. This correlation should be routinely reported alongside star estimates to pol-
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icymakers. Knowledge of how recoverability varies across models will assist policy makers

discern amongst them.

One conclusion from this paper is that our ability to navigate economic policy by the

stars is even more limited than we thought. A second is that knowing the extent to which a

model can recover its star variable — essentially, understanding its limitations — is useful

for researchers. It can help them understand whether further model development is desir-

able. There are many possible directions for this development, such as considering alterna-

tive structures, including more observed information, or moving away from handling star

variables as an exogenous stochastic variable. More generally, there is a trend to incorporate

greater flexibility into macroeconomic models, frequently by introducing additional shocks,

and these inevitably lead to short systems. While the aim of providing a better description

of the data is admirable, it is necessary to recognize that this has limitations. The stars the

model was intended to shine light on can be obscured.
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