Table C1: Looser Prior and Posterior Distributions for Rational Expectations Model
Parameters
Prior
Posterior
Distribution
Mean
Std dev
Mean
Std dev
5%
95%
Households and firms
β
0.99
0.99
γ
Gamma
1.20
0.20
1.075
0.212
0.971
1.667
η
Uniform
[0,1)
0.830
0.057
0.730
0.911
φ
Gamma
2.00
0.40
1.411
0.366
1.249
2.441
ω
Beta
0.20
0.10
0.893
0.175
0.290
0.934
δ
Gamma
1.50
0.10
1.593
0.102
1.399
1.737
δx
Gamma
1.50
0.10
1.311
0.101
1.306
1.637
θd
Beta
0.60
0.10
0.692
0.074
0.651
0.901
θm
Beta
0.60
0.10
0.811
0.081
0.647
0.913
ϕa
Gamma
0.10
0.05
0.166
0.057
0.064
0.243
Taylor rule
ρr
Beta
0.75
0.05
0.659
0.047
0.619
0.773
ϕπ
Gamma
1.50
0.10
1.544
0.1035
1.390
1.727
ϕy
Gamma
0.20
0.10
0.178
0.082
0.081
0.349
Persistence of shocks
ρa
Beta
0.60
0.20
0.721
0.079
0.519
0.780
ρs
Beta
0.60
0.20
0.558
0.218
0.120
0.951
ρd
Beta
0.60
0.20
0.621
0.092
0.520
0.820
ρm
Beta
0.60
0.20
0.169
0.038
0.086
0.207
Std dev of shocks (×10−2)
σa
Inv gamma
0.1
2
0.071
0.161
0.067
0.466
σs
Inv gamma
0.1
2
0.129
0.073
0.059
0.271
σd
Inv gamma
0.1
2
0.124
0.139
0.081
0.464
σm
Inv gamma
0.1
2
0.059
0.058
0.060
0.233
σr
Inv gamma
0.1
2
0.036
0.005
0.027
0.042
Notes: The posterior statistics are based on 2 million draws using the Markov
Chains Monte Carlo (MCMC) method with a 25 per cent burn-in period. For
the inverse gamma prior distributions, the mode and the degrees of freedom
are reported. Measurement errors (et in Equation (19))
are estimated assuming no prior information and are not shown here. The
marginal likelihood is −1,569.
Table C2: Looser Prior and Posterior Distributions for Learning Model
Parameters
Prior
Posterior
Distribution
Mean
Std dev
Mean
Std dev
5%
95%
Households and firms
α
0.18
0.18
β
0.99
0.99
γ
Gamma
1.20
0.20
1.344
0.188
1.048
1.664
η
Uniform
[0,1)
0.972
0.012
0.950
0.988
φ
Gamma
2.00
0.40
1.210
0.275
0.792
1.694
ω
Beta
0.20
0.10
0.205
0.053
0.113
0.285
δ
Gamma
1.50
0.10
1.638
0.102
1.475
1.813
δx
Gamma
1.50
0.10
1.434
0.097
1.280
1.598
θd
Beta
0.60
0.10
0.882
0.032
0.825
0.929
θm
Beta
0.60
0.10
0.236
0.057
0.153
0.338
ϕa
Gamma
0.10
0.05
0.258
0.064
0.162
0.374
ḡ
Uniform
[0,1)
0.0002
0.0001
0.0001
0.0003
Taylor rule
ρr
Beta
0.75
0.05
0.759
0.045
0.684
0.829
ϕπ
Gamma
1.50
0.10
1.494
0.096
1.338
1.660
ϕy
Gamma
0.20
0.10
0.189
0.090
0.065
0.350
Persistence of shocks
ρa
Beta
0.60
0.20
0.643
0.128
0.430
0.848
ρs
Beta
0.60
0.20
0.231
0.125
0.081
0.487
ρd
Beta
0.60
0.20
0.648
0.112
0.450
0.821
ρm
Beta
0.60
0.20
0.953
0.022
0.912
0.983
Std dev of shocks (×10−2)
σa
Inv gamma
0.1
2
0.091
0.030
0.053
0.152
σs
Inv gamma
0.1
2
0.071
0.022
0.045
0.114
σd
Inv gamma
0.1
2
0.252
0.107
0.113
0.450
σm
Inv gamma
0.1
2
0.178
0.113
0.065
0.429
σr
Inv gamma
0.1
2
0.033
0.005
0.027
0.041
Notes: The posterior statistics are based on 2 million draws using the Markov
Chains Monte Carlo (MCMC) method with a 25 per cent burn-in period. For
the inverse gamma prior distributions, the mode and the degrees of freedom
are reported. Measurement errors (et in Equation (19))
are estimated assuming no prior information and are not shown here. The
marginal likelihood is −1,567.
Table C3: Tighter Prior and Posterior Distributions for MSV Learning Model
Parameters
Prior
Posterior
Distribution
Mean
Std dev
Mean
Std dev
5%
95%
Households and firms
α
0.18
0.18
β
0.99
0.99
γ
Gamma
1.20
0.20
1.327
0.156
1.067
1.605
η
Uniform
[0,1)
0.977
0.006
0.966
0.985
φ
Gamma
2.00
0.40
0.938
0.163
0.658
1.223
ω
Beta
0.20
0.05
0.255
0.040
0.193
0.328
δ
Gamma
1.50
0.10
1.491
0.083
1.352
1.634
δx
Gamma
1.50
0.10
1.504
0.084
1.369
1.655
θd
Beta
0.60
0.05
0.733
0.024
0.670
0.771
θm
Beta
0.60
0.05
0.605
0.038
0.532
0.661
ϕa
Gamma
0.10
0.05
0.224
0.052
0.145
0.322
ḡ
Uniform
[0,1)
0.0003
0.0001
0.0002
0.0005
Taylor rule
ρr
Beta
0.75
0.01
0.750
0.010
0.734
0.766
ϕπ
Gamma
1.50
0.10
1.502
0.083
1.366
1.648
ϕy
Gamma
0.20
0.10
0.165
0.071
0.070
0.307
Persistence of shocks
ρa
Beta
0.60
0.20
0.740
0.131
0.452
0.888
ρs
Beta
0.60
0.20
0.389
0.136
0.192
0.659
ρd
Beta
0.60
0.20
0.432
0.074
0.337
0.576
ρm
Beta
0.60
0.20
0.764
0.081
0.661
0.935
Std dev of shocks (×10−2)
σa
Inv gamma
0.1
2
0.077
0.035
0.045
0.067
σs
Inv gamma
0.1
2
0.098
0.034
0.058
0.091
σd
Inv gamma
0.1
2
3.394
1.632
1.238
3.156
σm
Inv gamma
0.1
2
0.077
0.020
0.051
0.073
σr
Inv gamma
0.1
2
0.032
0.004
0.026
0.032
Notes: The posterior statistics are based on 2 million draws using the Markov
Chains Monte Carlo (MCMC) method with a 25 per cent burn-in period. For
the inverse gamma prior distributions, the mode and the degrees of freedom
are reported. The marginal likelihood is −1,830.
Table C4: Looser Prior and Posterior Distributions for MSV Learning Model
Parameters
Prior
Posterior
Distribution
Mean
Std dev
Mean
Std dev
5%
95%
Households and firms
α
0.18
0.18
β
0.99
0.99
γ
Gamma
1.20
0.20
1.295
0.201
0.978
1.643
η
Uniform
[0,1)
0.894
0.082
0.723
0.977
φ
Gamma
2.00
0.40
1.588
0.337
1.081
2.176
ω
Beta
0.20
0.10
0.669
0.091
0.506
0.805
δ
Gamma
1.50
0.10
1.588
0.103
1.422
1.763
δx
Gamma
1.50
0.10
1.463
0.097
1.306
1.627
θd
Beta
0.60
0.10
0.765
0.064
0.655
0.864
θm
Beta
0.60
0.10
0.696
0.073
0.570
0.809
ϕa
Gamma
0.10
0.05
0.293
0.082
0.166
0.437
ḡ
Uniform
[0,1)
0.0001
0.0001
0.0001
0.0002
Taylor rule
ρr
Beta
0.75
0.05
0.754
0.049
0.670
0.830
ϕπ
Gamma
1.50
0.10
1.502
0.100
1.341
1.672
ϕy
Gamma
0.20
0.10
0.188
0.094
0.065
0.367
Persistence of shocks
ρa
Beta
0.60
0.20
0.697
0.127
0.460
0.872
ρs
Beta
0.60
0.20
0.788
0.150
0.503
0.968
ρd
Beta
0.60
0.20
0.700
0.119
0.479
0.871
ρm
Beta
0.60
0.20
0.256
0.121
0.076
0.465
Std dev of shocks (×10−2)
σa
Inv gamma
0.1
2
0.143
0.081
0.067
0.121
σs
Inv gamma
0.1
2
0.081
0.029
0.048
0.074
σd
Inv gamma
0.1
2
0.441
0.265
0.141
0.380
σm
Inv gamma
0.1
2
0.044
0.008
0.033
0.043
σr
Inv gamma
0.1
2
0.036
0.005
0.027
0.033
Notes: The posterior statistics are based on 2 million draws using the Markov
Chains Monte Carlo (MCMC) method with a 25 per cent burn-in period. For
the inverse gamma prior distributions, the mode and the degrees of freedom
are reported. The marginal likelihood is −1,813.