RDP 9706: Is the Phillips Curve A Curve? Some Evidence and Implications for Australia Appendix B: Further Estimation Results

Table B.1: Adaptive Expectations
Phillips curve:
Inline Equation
where Inline Equation
γ LLF σ2 α max[u-u*] max[Δu*]
1.26 11.58 0.93 0.95 4.93 1.05
(3.55)  
(2.10)  
Phillips line:
Inline Equation
where Inline Equation
γ LLF σ2 α max[u-u*] max[Δu*]
0.40 24.48 0.21 0 8.00 4.27
(2.11)  
(3.14)  
t-statistics in parentheses: unadjusted, and Newey-West corrected
γ labour-market sensitivity parameter
LLF value of the log-likelihood function
σ2 standard error of the equation
α average value of u-u*
Table B.2: Melbourne Institute Expectations
Phillips curve:
Inline Equation
γ δ LLF σ2 α max[u-u*] max[Δu*]
1.15 0.09 1.90 0.31 1.54 6.73 0.67
(2.67) (1.97)  
(1.75) (1.23)  
Phillips line:
Inline Equation
γ δ LLF σ2 α max[u-u*] max[Δu*]
0.27 0.07 6.30 0.10 0 3.56 1.72
(1.26) (0.90)  
(2.95) (0.90)  
t-statistics in parentheses: unadjusted, and Newey-West corrected
γ labour-market sensitivity parameter
δ weight given to forward-looking component of inflation expectations
LLF value of the log-likelihood function
σ2 standard error of the equation
α average value of u-u*
Inline Equation forward-looking inflation expectations based on the Melbourne Institute survey of inflation expectations
Note: There is an extremely large amount of variation in the NAIRU under both the linear and non-linear model in the early part of the sample. Figures quoted here for α, max[u-u*] and max Δu* exclude observations from the first three years of the sample for which the Melbourne Institute survey was available (1973 to 1975).
Table B.3: Model with Speed Limits
Phillips curve:
Inline Equation
where Inline Equation
γ δ χ LLF σ2 α max[u-u*] max[Δu*]
1.43 0.11 1.86 19.80 0.46 1.22 6.08 1.24
(3.45) (2.95) (2.31)  
(3.32) (2.16) (0.810)  
Phillips line:
Inline Equation
where Inline Equation
γ δ χ LLF σ2 α max[u-u*] max[Δu*]
0.31 0.18 1.53 29.99 0.16 0 7.41 3.43
(1.56) (2.36) (1.59)  
(4.02) (2.84) (0.71)  
t-statistics in parentheses: unadjusted, and Newey-West corrected
γ labour-market sensitivity parameter
δ weight given to forward-looking component of inflation expectations
χ parameter on speed limit term
LLF value of the log-likelihood function
σ2 standard error of the equation
α average value of u-u*
Inline Equation forward-looking inflation expectations based on bond yields, equal to the 10-year bond rate less the world real interest rate
Table B.4: Model with Dummy Variables
Phillips curve:
Inline Equation
where Inline Equation
γ δ D1 LLF σ2 α max[u-u*] max[Δu*]
0.94 0.13 2.59 36.82 0.35 2.10 7.89 1.33
(2.28) (3.65) (4.85)  
(4.22) (2.41) (2.28)  
Phillips line:
Inline Equation
where Inline Equation
γ δ D1 LLF σ2 α max[u-u*] max[Δu*]
0.20 0.18 2.20 39.21 0.14 0 6.80 5.69
(1.00) (2.33) (2.89)  
(3.81) (3.73) (2.44)  
t-statistics in parentheses: unadjusted, and Newey-West corrected
γ labour-market sensitivity parameter
δ weight given to forward-looking component of inflation expectations
D1 dummy variable for the period 1973:Q3–1975:Q2
LLF value of the log-likelihood function
σ2 standard error of the equation
α average value of u-u*
Inline Equation forward-looking inflation expectations based on bond yields, equal to the 10-year bond rate less the world real interest rate